HIGH EFFICIENCY
TUBULAR HEAT EXCHANGER SERIES

MODELS: DGAD / DGAE / DGAF
(Single-Stage Downflow, 92% AFUE, Manufactured Housing or Modular Home Applications)

60 - 100 MBH INPUT
(17.6 - 29.3 KW) INPUT

LIST OF SECTIONS

SAFETY ... 1
DUCTWORK ... 4
FILTERS ... 7
GAS PIPING .. 8
ELECTRICAL POWER 10

COMBUSTION AIR AND VENT SYSTEM 11
CONDENSATE PIPING 18
SAFETY CONTROLS 20
START-UP AND ADJUSTMENTS 20
WIRING DIAGRAM 28

LIST OF FIGURES

Combustion Floor Base Accessory 5
Transition Kit Assembly 6
Attachment to Structure 6
Blade Air Bracket 6
Dimensions 7
Mobile Home Filter Frame Accessories .. 7
Modular Home Return Filter Grill and Return Duct Installation .. 8
Convertible Gas Valve 8
Downflow Gas Piping 8
Electrical Wiring 10
Line Wiring Connections 11
Single Stage Heat Thermostat Connections .. 11
Accessory Connections 11
Dimensions 12
Home Layout 14
Downflow Vent Assembly 15
Termination Configuration - 1 Pipe (Modular Installations Only) 15
Termination Configuration - 2 Pipe 15
Double Horizontal Sealed Combustion Air and Vent Termination 16
Double Vertical Sealed Combustion Air and Vent Termination 16
Sealed Combustion Air Intake Connection and Vent Connection 16
Combustion Airflow Path Through The Furnace Casing 17
to the Burner Box (Modular Home Installations Only) 17
Outside and Ambient Combustion Air (Modular Home Installations Only) 17
Attic Combustion Air Termination 18
Condensate Drain Internal Hose Routing 18
Downflow Condensate Drain Hose Configuration 19
Pressure Switch Tubing Routing 20
Gas Valve ... 23
Reading Gas Pressure 24
Furnace Control Board 24
Wiring Diagram 28

LIST OF TABLES

Unit Clearances to Combustibles 4
Nominal Manifold Pressure 9
Electrical and Performance Data 10
Maximum Equivalent Pipe Length 12
Equivalent Length of Fittings 12
Elbow Dimensions 12
Combustion Air Intake and Vent Connection Size at Furnace (All Models) 12
Estimated Free Area 17
Free Area - Outdoor Air 17
Unconfined Space Minimum Area in Square Inch 17
Condensate Drain Hose 19
Inlet Gas Pressure Range 23
Nominal Manifold Pressure 23
Blower Performance CFM 26
Filter Performance - Pressure Drop Inches WC. and (kPa) 26
Field Installed Accessories - Non-Electrical 27

SECTION I: SAFETY

This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal injury.

Understand and pay particular attention to the signal words DANGER, WARNING, or CAUTION.

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in death or serious injury.

WARNING indicates a potentially hazardous situation, which, if not avoided, could result in death or serious injury.

CAUTION indicates a potentially hazardous situation, which, if not avoided, may result in minor or moderate injury. It is also used to alert against unsafe practices and hazards involving only property damage.

WARNING
Improper installation may create a condition where the operation of the product could cause personal injury or property damage.
Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to this manual for assistance or for additional information, consult a qualified contractor, installer or service agency.

CAUTION
This product must be installed in strict compliance with the installation instructions and any applicable local, state, and national codes including, but not limited to building, electrical, and mechanical codes.
SPECIFIC SAFETY RULES AND PRECAUTIONS

1. Only Natural gas or Propane (LP) gas are approved for use with this furnace. Refer to the furnace rating plate or SECTION IV of these instructions.

2. Install this furnace only in a location and position as specified in SECTION I of these instructions.

3. A gas-fired furnace for installation in a residential garage must be installed as specified in SECTION I of these instructions.

4. Provide adequate combustion and ventilation air to the furnace space as specified in SECTION VI of these instructions.

5. Combustion products must be discharged outdoors. Connect this furnace to an approved vent system only, as specified in SECTION VI of these instructions.

WARNING

FIRE OR EXPLOSION HAZARD
Failure to follow the safety warnings exactly could result in serious injury, death or property damage.

Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury or loss of life.

6. Tests for gas leaks as specified in SECTION IX of these instructions.

7. Always install the furnace to operate within the furnace’s intended temperature rise range. Only connect the furnace to a duct system which has an external static pressure within the allowable range, as specified on the furnace rating plate.

8. When a furnace is installed so that supply ducts carry air circulated by the furnace to areas outside the space containing the furnace, the return air may also be handled by duct(s) sealed to the furnace casing and terminating outside the space containing the furnace. The return air duct system is not required by the furnace manufacturer provided the combustion air and vent system have been installed and maintained as a Two Pipe Sealed Combustion Air System and provided a return air duct system and return air plenum are not required by state, local, or regional codes.

9. It is permitted to use the furnace for heating of buildings or structures under construction. Installation must comply with all manufacturer’s installation instructions including:
 • Proper vent installation;
 • Furnace operating under thermostatic control;
 • Return air duct sealed to the furnace;
 • Air filters in place;
 • Set furnace input rate and temperature rise per rating plate marking;
 • Means for providing outdoor air required for combustion;
 • Return air temperature maintained between 55°F (13°C) and 80°F (27°C);
 • The air filter must be replaced upon substantial completion of the construction process;
 • Clean furnace, duct work and components upon substantial completion of the construction process, and verify furnace operating conditions including ignition, input rate, temperature rise and venting, according to the manufacturer’s instructions.

10. When installed in a Manufactured (Mobile) Home, combustion air shall not be supplied from occupied spaces.

11. The size of the unit should be based on an acceptable heat loss calculation for the structure. ACCA, Manual J or other approved methods may be used.

12. Manufactured (Mobile) Home Installation: This appliance must be installed in a two-pipe (sealed combustion) configuration. The combustion air pipe must terminate in the same atmospheric zone, external to the building.

13. Modular Home Installations:
 This appliance may be installed in the following configurations:
 A. A (two pipe) Sealed Combustion Configuration. This configuration has a combustion air pipe and the vent pipe that terminate in the same atmospheric zone, external to the building. Refer to Figure 18 for combustion air and vent terminations.
 B. An (one pipe) Ambient Combustion Air Configuration. This configuration has no combustion air pipe connected to the burner box and the vent pipe terminate external to the building. Refer to Figure 17 for vent terminations.
 C. A (one pipe) Ventilated Combustion Air Configuration. This configuration has the combustion air pipe connected to the burner box and terminating in an attic or crawl space. The vent pipe terminates external to the building. The vent pipe and combustion air pipe will not terminate in the same atmospheric zone. Refer to Figure 24 for combustion air and vent terminations.

14. Modular Home Definition: Factory-built home constructed to the state, local, or regional code where the house will be located. The home is transported in one or more modules and joined at the home site.

15. Mobile Home Definition: Factory-built home constructed, transported and installed under the federal building code administered by the U.S. Department of Housing and Urban Development (HUD Code), rather than to building codes at their destination. The home is built, transported, installed on a non-removable chassis.

SAFETY REQUIREMENTS

• A manufactured (mobile) home installation must conform with Manufactured Home Construction and Safety Standard, Title 24 CFR, Part 3280, or when such standard is not applicable, the standard for Manufactured Home Installations (Manufactured Home Sites, Communities, and Set-ups) ANSI/NCS A225.1, and/or the Canadian Standard for CAN/CSA Z240 MH, Series M92 Mobile Homes. Furnaces have been certified to the latest edition of standard ANSI Z21-47 • CSA 2.3.

• Refer to the unit rating plate for the furnace model number, and then see the dimensions page of this instruction for return air plenum dimensions in Figure 5. The duct transition or the plenum must be installed according to the instructions.

• Provide clearances from combustible materials as listed under Clearances to Combustibles.

• Provide clearances for servicing ensuring that service access is allowed for both the burners and blower.

• These models ARE CSA listed or approved for installation into a Modular Home or a Manufactured (Mobile) Home.

• This furnace is not approved for installation in trailers or recreational vehicles.

• Failure to carefully read and follow all instructions in this manual can result in furnace malfunction, death, personal injury and/or property damage.

• Furnaces for installation on combustible flooring shall not be installed directly on carpeting, tile or other combustible material other than wood flooring.

• Check the rating plate and power supply to be sure that the electrical characteristics match. All models use nominal 115 VAC, 1 Phase, 60-Hertz power supply. DO NOT CONNECT THIS APPLIANCE TO A 50 HZ POWER SUPPLY OR A VOLTAGE ABOVE 130 VOLTS.

• Furnace shall be installed so the electrical components are protected from water.

• Installing and servicing heating equipment can be hazardous due to the electrical components and the gas fired components. Only trained and qualified personnel should install, repair, or service gas heating equipment. Untrained service personnel can perform basic maintenance functions such as cleaning and replacing the air filters. When working on heating equipment, observe precautions in the manuals and on the labels attached to the unit and other safety precautions that may apply.

• These instructions cover minimum requirements and conform to existing national standards and safety codes. In some instances these instructions exceed certain local codes and ordinances, especially those who have not kept up with changing residential and modular home construction practices. These instructions are required as a minimum for a safe installation.
COMBUSTION AIR QUALITY
(LIST OF CONTAMINANTS)
The furnace will require OUTDOOR AIR for combustion when the furnace is located in any of the following environments.
- Restricted Environments
- Commercial buildings
- Buildings with indoor pools
- Furnaces installed in laundry rooms
- Furnaces installed in hobby or craft rooms
- Furnaces installed near chemical storage areas
- Chemical Exposure

The furnace will require OUTDOOR AIR for combustion when the furnace is located in an area where the furnace is being exposed to the following substances and/or chemicals.
- Permanent wave solutions
- Chlorinated waxes and cleaners
- Chlorine based swimming pool chemicals
- Water softening chemicals
- De-icing salts or chemicals
- Carbon tetrachloride
- Halogen type refrigerants
- Cleaning solvents (such as perchloroethylene)
- Printing inks, paint removers, varnishes, etc.
- Hydrochloric acid
- Cements and glues
- Antistatic fabric softeners for clothes dryers
- Masonry acid washing materials

When outdoor air is used for combustion, the combustion air intake pipe termination must be located external to the building and in an area where there will be no exposure to the substances listed above. Refer to "Combustion Air Supply" in SECTION VI for crawl space or Attic Combustion Air Terminations.

WARNING
The furnace area must not be used as a broom closet or for any other storage purposes, as a fire hazard may be created. Never store items such as the following on, near or in contact with the furnace.
1. Spray or aerosol cans, rags, brooms, dust mops, vacuum cleaners or other cleaning tools.
2. Soap powders, bleaches, waxes or other cleaning compounds; plastic items or containers; gasoline, kerosene, cigarette lighter fluid, dry cleaning fluids or other volatile fluid.
3. Paint thinners and other painting compounds.
4. Paper bags, boxes or other paper products.

Never operate the furnace with the blower door removed. To do so could result in serious personal injury and/or equipment damage.

FOR FURNACES INSTALLED IN THE COMMONWEALTH OF MASSACHUSETTS ONLY
For all side wall horizontally vented gas fueled equipment installed in every dwelling, building or structure used in whole or in part for residential purposes, including those owned or operated by the Commonwealth and where the side wall exhaust vent termination is less than seven (7) feet above finished grade in the area of the venting, including but not limited to decks and porches, the following requirements shall be satisfied:

1. INSTALLATION OF CARBON MONOXIDE DETECTORS. At the time of installation of the side wall horizontal vented gas fueled equipment, the installing plumber or gasfitter shall observe that a hard wired carbon monoxide detector with an alarm and battery back-up is installed on the floor level where the gas equipment is to be installed. In addition, the installing plumber or gasfitter shall observe that a battery operated or hard wired carbon monoxide detector with an alarm is installed on each additional level of the dwelling, building or structure served by the side wall horizontal vented gas fueled equipment. It shall be the responsibility of the property owner to secure the services of qualified licensed professionals for the installation of hard wired carbon monoxide detectors.
 a. In the event that the side wall horizontally vented gas fueled equipment is installed in a crawl space or an attic, the hard wired carbon monoxide detector with alarm and battery back-up may be installed on the next adjacent floor level.
 b. In the event that the requirements of this subdivision can not be met at the time of completion of installation, the owner shall have a period of thirty (30) days to comply with the above requirements; provided, however, that during said thirty (30) day period, a battery operated carbon monoxide detector with an alarm shall be installed.

2. APPROVED CARBON MONOXIDE DETECTORS. Each carbon monoxide detector as required in accordance with the above provisions shall comply with NFPA 720 and be ANSI/UL 2034 listed and IAS certified.

3. SIGNAGE. A metal or plastic identification plate shall be permanently mounted to the exterior of the building at a minimum height of eight (8) feet above grade directly in line with the exhaust vent terminal for the horizontally vented gas fueled heating appliance or equipment. The sign shall read, in print size no less than one-half (1/2) inch in size, "GAS VENT DIRECTLY BELOW, KEEP CLEAR OF ALL OBSTRUCTIONS".

4. INSPECTION. The state or local gas inspector of the side wall horizontally vented gas fueled equipment shall not approve the installation unless, upon inspection, the inspector observes carbon monoxide detectors and signage installed in accordance with the provisions of 248 CMR 5.08(2)(a)1 through 4.
INSPECTION

As soon as a unit is received, it should be inspected for possible damage during transit. If damage is evident, the extent of the damage should be noted on the carrier’s freight bill. A separate request for inspection by the carrier’s agent should be made in writing. Also, before installation the unit should be checked for screws or bolts, which may have loosened in transit. There are no shipping or spacer brackets which need to be removed.

FURNACE LOCATION AND CLEARANCES

The furnace shall be located using the following guidelines:

1. Where a minimum amount of air intake/vent piping and elbows will be required.
2. As centralized with the air distribution as possible.
3. Where adequate combustion air will be available (particularly when the appliance is not using outdoor combustion air).
4. Where it will not interfere with proper air circulation in the confined space.
5. Where the outdoor combustion air/vent terminal will not be blocked or restricted. Refer to "COMBUSTION AIR / VENT CLEARANCES" located in SECTION VI of these instructions. These minimum clearances must be maintained in the installation.
6. Where the unit will be installed in a level position with no more than 1/4" (0.6 cm) slope side-to-side and front-to-back to provide proper condensate drainage.

Installation in freezing temperatures:

1. Furnace shall be installed in an area where ventilation facilities provide for safe limits of ambient temperature under normal operating conditions. Ambient temperatures must not fall below 32°F (0°C) unless the condensate system is protected from freezing.
2. Do not allow return air temperature to be below 55°F (13°C) for extended periods. To do so may cause condensation to occur in the main heat exchanger, leading to premature heat exchanger failure.

Clearances for access:

Ample clearances should be provided to permit easy access to the unit. The following minimum clearances are recommended:

1. Twenty-four (24) inches (61 cm) between the front of the furnace and an adjacent wall or another appliance, when access is required for servicing and cleaning.
2. Eighteen (18) inches (46 cm) at the side where access is required for passage to the front when servicing or for inspection or replacement of flue/vent connections.

In all cases, accessibility clearances shall take precedence over clearances for combustible materials where accessibility clearances are greater.

WARNING

Improper installation in an ambient below 32°F (0°C) could create a hazard, resulting in damage, injury or death.

3. If this furnace is installed in any area where the ambient temperature may drop below 32°F (0°C), a UL, CUL, CSA, or CGA listed self-regulated heat tape, and if required by State of Local codes, a condensate pump must be installed on any condensate drain lines. It is required that self regulating heat tape rated at 3 watts per foot (0.92 watts per meter) be used. This must be installed around the condensate drain lines in the unconditioned space. Always install the heat tape per the manufacturer's instructions. Cover the self-regulating heat tape with fiberglass, closed cell insulation or other heat resistant insulating material.

IMPORTANT: If blown in insulation is used to insulate the condensate drain lines, be sure that the entire drain line is covered with at least 3" (7.6 cm) of insulation. If 3" (7.6 cm) of insulation is not available you must use a fiberglass, closed cell insulation or other heat resistant insulating material with a minimum "R" value of 3.5. Make sure to insulate both the vertical and horizontal portions of the condensate drain line where exposed to below freezing temperatures. Insulation must have a minimum "R" value of 3.5. Condensate drain pipe must slope 1/4" per foot (0.635 cm/m) so that condensate will flow towards the drain.

4. If this unit is installed in an unconditioned space and an extended power failure occurs, there will be potential damage to the condensate trap, drain lines and internal unit components. Following a power failure situation, do not operate the unit until inspection and repairs are performed.

SECTION II: DUCTWORK

DUCTWORK GENERAL INFORMATION

The duct system's design and installation must:

1. Handle an air volume appropriate for the served space and within the operating parameters of the furnace specifications.
2. Be installed in accordance with standards of NFPA (National Fire Protection Association) as outlined in NFPA pamphlets 90A and 90B (latest editions) or applicable national, provincial, or state, and local fire and safety codes.
3. For Manufactured (Mobile) Home and Modular Home Return Duct System Installations: The return air duct and the return air plenum are not required by the furnace manufacturer provided the combustion air and vent system have been installed and maintained as a Two Pipe Sealed Combustion Air System and provided a return air duct and plenum are not required by state, local or regional codes.
4. Complete a path for heated or cooled air to circulate through the air conditioning and heating equipment and to and from the conditioned space.

NOTE: When attaching duct flange, do not shoot the screw down into the casing. Use the formed flange intended for duct flange attachment.
CAUTION

The cooling coil must be installed in the supply air duct, downstream of the furnace. Cooled air must not flow over the heat exchanger.

When the furnace is used in conjunction with a cooling coil, the coil must be installed parallel with, or in the supply air side of the furnace to avoid condensation in the primary heat exchanger. When a parallel flow arrangement is used, dampers or other means used to control airflow must be adequate to prevent chilled air from entering the furnace. If manually operated, the damper must be equipped with means to prevent the furnace or the air conditioner from operating unless the damper is in full heat or cool position.

WARNING

The duct system must be properly sized to obtain the correct airflow for the furnace size that is being installed. Refer to Table 3 and the furnace rating plate for the correct rise range and static pressures. If the ducts are undersized, the result will be high duct static pressures and/or high temperature rises which can result in a heat exchanger OVERHEATING CONDITION. This condition can result in premature heat exchanger failure, which can result in personal injury, property damage, or death.

FLOOR BASE AND DUCTWORK INSTALLATION

Downflow Combustible Floor Base

Installations on combustible materials require the use of a combustible floor base shown in Figure 1.

The floor base must be secured to the floor. A supply air duct plenum with 1" (2.54 cm) flange is installed through the opening provided. The supply air duct is then secured to the duct system with screws and sealed to prevent leaks. Do not shoot screws through the flanges of the supply air duct into the top of the combustible floor base. Install the furnace on the combustible floor base so that the corners of the furnace are parallel with the corner brackets of the floor base. Follow the instructions supplied with the combustible floor base accessory.

This combustible floor base can be replaced with a matching cooling coil, properly sealed to prevent leaks. Follow the instructions supplied with the cooling coil cabinet for installing the cabinet to the duct connector. Refer to the installation instructions for additional information.

When replacing an existing furnace, if the existing plenum is not the same size as the new furnace then the existing plenum must be removed and a new plenum installed that is the proper size for the new furnace.

IMPORTANT: If the supply air duct is being connected to the furnace without the use of an accessory duct connector, then a transition duct must be installed with flanges or tabs that are securely attach and sealed to the supply air duct and to the base of the furnace. The transition duct must have insulation between the transition duct and any combustible material.

The transition duct must be the same dimensional size as the rectangular opening in the base of the furnace.

WARNING

The supply air temperature MUST NEVER exceed the Maximum Supply Air Temperature specified on the nameplate. Operating the furnace above the maximum supply air temperature will cause the heat exchanger to overheat, causing premature heat exchanger failure. Improper duct sizing, dirty air filters, incorrect manifold pressure, incorrect gas orifice and/or a faulty limit switch can cause the furnace to operate above the maximum supply air temperature. Refer to SECTIONS II, III and XI for additional information on correcting the problem.
Downflow Air Conditioning Coil Cabinet
The Cooling Coil Cabinet can be used in place of the combustible floor base for downflow installations on combustible materials. The furnace should be installed with the cooling coil cabinet specifically intended for downflow applications. The cooling coil cabinet must be secured to the floor. A supply air duct plenum is installed through the opening provided. The supply air duct is then secured to the duct system with screws and sealed to prevent leaks. If a matching cooling coil is used, it may be connected directly to the furnace outlet using the accessory transition kit and sealed to prevent leakage. The transition kit must be used to secure the cooling coil cabinet to the furnace casing when installed in a downflow configuration.

NOTE: The model 9155 Coil cabinet does not require the use of an accessory transition kit. It may be connected directly to the furnace outlet.

The transition kit (when used) may be installed in one of two ways. The transition kit may be installed and secured to either the furnace or the cooling coil cabinet by the use of screws and then it must be sealed to prevent leaks.

- If the transition kit has been installed on the cooling coil cabinet it must be secured to the cooling coil cabinet with screws. The supply air side of the furnace is then placed on the cooling coil cabinet and secured to the transition kit.
- If the transition kit has been installed on the supply air side of the furnace it must be secured to the furnace with screws. The furnace and the transition kit are then placed on the cooling coil cabinet and secured with screws.

IMPORTANT: The furnace, transition kit (when used), and the cooling coil cabinet MUST BE SEALED as needed to prevent leaks, AND SECURED. Refer to the assembly drawing in Figure 2.

IMPORTANT: On all installations without a coil, a removable access panel is recommended in the outlet duct such that smoke or reflected light would be observable inside the casing to indicate the presence of leaks in the heat exchanger. This access cover shall be attached in such a manner as to prevent leaks.

Attachment to Structure
A furnace for installation in a manufactured (mobile) home must be securely attached to the building structure. The perforated strap supplied with the furnace may be used for that purpose. Refer to Figure 3.

BLEND AIR INSTALLATIONS
This bracket is to be used only for Alcove application on the 90% Gas Furnaces. It helps in installation of Blend Air Damper Tube close to the furnace. It is recommended that the Blend Air be installed with the help of this bracket as close to the furnace as possible. The Blend Air Bracket Assembly should be installed no higher than 18 inches above the furnace. See Figure 4.

FIGURE 2: Transition Kit Assembly

FIGURE 3: Attachment to Structure

FIGURE 4: Blend Air Bracket
FIGURE 5: Dimensions

<table>
<thead>
<tr>
<th>BTUH (KW) Input</th>
<th>CFM (m²/min)</th>
<th>Cabinet Size</th>
<th>Cabinet Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A (in.)</td>
<td>B (in.)</td>
</tr>
<tr>
<td>60,000 (17.6)</td>
<td>1200 (34.0)</td>
<td>B</td>
<td>17-1/2</td>
</tr>
<tr>
<td>80,000 (23.4)</td>
<td>1600 (45.3)</td>
<td>C</td>
<td>21</td>
</tr>
<tr>
<td>100,000 (29.3)</td>
<td>2000 (56.6)</td>
<td>C</td>
<td>21</td>
</tr>
</tbody>
</table>

DOWNFLOW RETURN PLENUM CONNECTION

The return air duct and the return air plenum are not required by the furnace manufacturer provided the combustion air and vent system have been installed and maintained as a Two Pipe Sealed Combustion Air System and provided a return air duct and plenum are not required by state, local or regional codes.

- If a return plenum system is utilized, the use of a listed flexible duct connector is recommended. The connection of the plenum to the furnace and all the ducts connecting to the plenum must be sealed to prevent air leakage. The sheet metal should be crosshatched to eliminate any popping of the sheet metal when the indoor fan is energized. The duct system is a very important part of the installation. If the duct system is improperly sized the furnace will not operate properly. The ducts attached to the furnace must be of sufficient size so that the furnace operates at the specified external static pressure and within the air temperature rise specified on the nameplate and in Table 3.

- If the return air duct and plenum are not required by state, local or regional codes then the filter can be attached to the top of the furnace as shown in Figure 6.

IMPORTANT: When replacing an existing the furnace, if a return air plenum is used and the existing plenum is not the same size as the new furnace, then the existing plenum must be removed and a new plenum installed that is the proper size for the new furnace. If a return duct mounted filter rack or filter grille is being used, see the instructions provided with that accessory for proper hole cut size.

SECTION III: FILTERS

FILTER INSTALLATION

All applications require the use of a filter. Accessory filter kits are available. Refer to Table 14 for accessory part numbers.

FIGURE 6: Mobile Home Filter Frame Accessories
Downflow furnaces typically are installed with the filters located above the furnace. If a return air plenum is used, the filter rack is installed into the return air plenum or duct. Any branch duct (rectangular or round duct) attached to the plenum must attach to the vertical plenum above the filter height. Refer to Figure 7. Filters(s) may be located in the duct system external to the furnace using an external duct filter box which may be attached to the furnace plenum or at the end of the duct in a return filter grille(s). The use of straps and/or supports is required to support the weight of the external filter box.

If the accessory electronic air cleaner is installed, be sure the air cleaner is designed to accommodate the furnace CFM (cm/m) and the air cleaner is installed so it does not obstruct the return airflow. Clearance consideration should be given when locating the air cleaner for maintenance. The use of straps and/or supports is required to support the weight of the electronic air cleaner. It is recommended that the air cleaner not be located within 12 inches (30.5 cm) from the top of the return air opening on the furnace. Refer to the instructions supplied with the electronic air cleaner.

CAUTION
All loose accessories shipped with the furnace must be removed from the blower compartment, prior to installation.

If pleated media air filters or any filter that has a large pressure drop is installed in the return air duct system, be sure that the pressure drop caused by the air filter will not prevent the furnace from operating within the rise range specified on the rating plate and in Table 5. If the furnace does not operate within the specified rise range then a larger air filter or an air filter that has a lower pressure drop must be installed. Refer to the furnace accessories for accessory external filter kit options.

IMPORTANT: For easier filter access in a downflow configuration when a return air plenum is being used, a removable access panel is recommended in the vertical run of the return air plenum immediately above the furnace.

SECTION IV: GAS PIPING

GAS SAFETY

An overpressure protection device, such as a pressure regulator, must be installed in the gas piping system upstream of the furnace and must act to limit the downstream pressure to the gas valve so it does not exceed 0.5 PSI (14" w.c. (3.48 kPa). Pressures exceeding 0.5 PSI (14" w.c. (3.48 kPa) at the gas valve will cause damage to the gas valve, resulting in a fire or explosion or cause damage to the furnace or some of its components that will result in property damage and loss of life.

CAUTION
All installations must have a filter installed.

DANGER

All loose accessories shipped with the furnace must be removed from the blower compartment, prior to installation.

GAS PIPING INSTALLATION

Properly sized wrought iron, approved flexible or steel pipe must be used when making gas connections to the unit. If local codes allow the use of a flexible gas appliance connection, always use a new listed connector. Do not use a connector that has previously serviced another gas appliance.

Some utility companies or local codes require pipe sizes larger than the minimum sizes listed in these instructions and in the codes. The furnace rating plate and the instructions in this section specify the type of gas approved for this furnace - only use those approved gases. The installation of a drip leg and ground union is required. Refer to Figure 9.

IMPORTANT: An accessible manual shutoff valve must be installed upstream of the furnace gas controls and within 6 feet (1.8 m) of the furnace.

The furnace must be isolated from the gas supply piping system by closing its individual external manual shutoff valve during any pressure testing of the gas supply piping system at pressures equal to or less than 1/2 psig (3.5 kPa).
PROPANE (LP) CONVERSION PROCEDURE

CAUTION

Never apply a pipe wrench to the body of the gas valve when installing piping. A wrench must be placed on the octagon hub located on the gas inlet side of the valve. Placing a wrench to the body of the gas valve will damage the valve causing improper operation and/or the valve to leak.

Gas piping may be connected from either side of the furnace using any of the gas pipe entry knockouts on both sides of the furnace. Refer to Figure 5 dimensions.

WARNING

SHOCK HAZARD - Turn off electrical supply to furnace.

1. Shut off gas supply at valve upstream from furnace or at meter as required.
2. Disconnect gas supply piping from gas valve on furnace.
3. Disconnect electrical wires from gas valve, noting which wires are connected to which terminals.
4. Remove the screws that attach the gas manifold to the burner support box.
5. Remove and discard natural gas orifices.
6. Remove LP (propane) orifices from the bag in the Customer Packet.
7. Install the LP (propane) gas orifices supplied with the furnace. Tighten to 15 - 25 inch - pounds of torque.
8. Reinstall the manifold in the assembly by reversing the removal process.

TABLE 2: Nominal Manifold Pressure

<table>
<thead>
<tr>
<th>Manifold Pressures (in wc)</th>
<th>Altitude (feet)</th>
<th>0-7999</th>
<th>8000-8999</th>
<th>9000-9999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Heating Value (BTU/ft²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>3.5</td>
<td>3.5</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>3.5</td>
<td>3.2</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>1050</td>
<td>3.5</td>
<td>2.9</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>3.2</td>
<td>2.7</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>2500 (LP)</td>
<td>9.8</td>
<td>8.2</td>
<td>7.5</td>
<td></td>
</tr>
</tbody>
</table>

9. Reconnect the wires to the proper terminals on the gas valve.
10. Unscrew the gas valve regulator with the blue cap and turn it upside down so the letters “LP” are upright. Replace the blue cap on the regulator.
11. Remove the natural gas tag and replace with the propane gas tag supplied in the orifice bag.
12. Remove the blue conversion label on the furnace door after the furnace has been converted.
13. Reconnect the gas supply piping to the gas valve and insure that all gas connections are tight.
14. Remove pressure tap plugs from gas valve and connect water gauge to the pressure tap ports. See Figure 28 for location of the gas valve pressure taps and pressure regulator adjustment.
15. Turn on gas supply to furnace and check all gas connections with suitable leak detector.

WARNING

Never use an open flame to check for leaks. Fire or explosion could occur. Since some leak solutions including soap and water may cause corrosion or stress cracking, the piping must be rinsed with water after testing unless it has been determined that the leak test solution is non-corrosive.

HIGH ALTITUDE GAS ORIFICE CONVERSION

This furnace is constructed at the factory for natural gas-fired operation at 0 – 8,000 feet (0-m – 2,438 m) above sea level. The manifold pressure must be changed in order to maintain proper and safe operation when the furnace is installed in a location where the altitude is greater than 8,000 feet (2,438 m) above sea level. Refer to Table 4 for proper manifold pressure settings.

HIGH ALTITUDE PRESSURE SWITCH CONVERSION

For installation where the altitude is less than 8,000 feet (2,438 m), it is not required that the pressure switch be changed. For altitudes above 8,000 feet (2,438 m), see Table 14 Field Installed Accessories - High Altitude Pressure Switch.

DANGER

PROPANE AND HIGH ALTITUDE CONVERSION KITS

It is very important to choose the correct kit and/or gas orifices for the altitude and the type of gas for which the furnace is being installed. Only use natural gas in furnaces designed for natural gas. Only use propane (LP) gas for furnaces that have been properly converted to use propane (LP) gas. Do not use this furnace with butane gas.

Incorrect gas orifices or a furnace that has been improperly converted will create an extremely dangerous condition resulting in premature heat exchanger failure, excessive sooting, high levels of carbon monoxide, personal injury, property damage, a fire hazard and/or death.

High altitude and propane (LP) conversions are required in order for the appliance to satisfactorily meet the application. An authorized distributor or dealer must make all gas conversions.

In Canada, a certified conversion station or other qualified agency, using factory specified and/or approved parts, must perform the conversion. The installer must take every precaution to insure that the furnace has been converted to the proper gas orifice size when the furnace is installed. Do not attempt to drill out any orifices to obtain the proper orifice size. Drilling out a gas orifice will cause misalignment of the burner flames, causing premature heat exchanger burnout, high levels of carbon monoxide, excessive sooting, a fire hazard, personal injury, property damage and/or death.
SECTION V: ELECTRICAL POWER

TABLE 3: Electrical and Performance Data

<table>
<thead>
<tr>
<th>Input/Cabinet</th>
<th>Output</th>
<th>Nominal Airflow</th>
<th>Cabinet Width</th>
<th>Total Unit</th>
<th>AFUE</th>
<th>Air Temp. Rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBH kW</td>
<td>MBH kW</td>
<td>CFM m³/min</td>
<td>in. cm</td>
<td>Amps</td>
<td>%</td>
<td>°F °C</td>
</tr>
<tr>
<td>60/B 18</td>
<td>55</td>
<td>16.1</td>
<td>1200</td>
<td>34.0</td>
<td>17-1/2</td>
<td>44.4</td>
</tr>
<tr>
<td>80/C 23</td>
<td>74</td>
<td>21.7</td>
<td>1600</td>
<td>45.3</td>
<td>21</td>
<td>53.3</td>
</tr>
<tr>
<td>100/C 29</td>
<td>93</td>
<td>27.3</td>
<td>2000</td>
<td>56.6</td>
<td>21</td>
<td>53.3</td>
</tr>
</tbody>
</table>

* Wire size and overcurrent protection must comply with the National Electric Code - 14/2 wire required when connected to a 15 amp circuit breaker.

NOTES:
1. For altitudes above 2000 ft. (609 m) reduce capacity 4% for each 1000 ft. above sea level.
2. Wire size based on copper conductors, 140 ° F (60°C), 3% voltage drop.
3. Continuous return air temperature must not be below 55°F (12.8 °C).
4. Annual Fuel Utilization Efficiency (AFUE) numbers are determined in accordance with DOE Test procedures.
5. Wire size and overcurrent protection must comply with the National Electrical Code (NFPA-70-latest edition) and all local codes.

ELECTRICAL POWER CONNECTIONS

Field wiring to the unit must be grounded. Electric wires that are field installed shall conform to the temperature limitation for 63°F (35°C) rise wire when installed in accordance with instructions. Refer to Table 5 in these instructions for specific furnace electrical data.

CAUTION
Use copper conductors only.

SUPPLY VOLTAGE CONNECTIONS

1. Provide a power supply separate from all other circuits. Install overcurrent protection and disconnect switch per local/national electrical codes. The switch should be close to the unit for convenience in servicing. With the disconnect or fused switch in the OFF position, check all wiring against the unit wiring label. Refer to the wiring diagram in this instruction. See Figure 28.
2. Remove the screws retaining the wiring box cover. Route the power wiring through the opening in the unit into the junction box with a conduit connector or other proper connection. In the junction box there will be three wires, a Black Wire, a White Wire and a Green Wire. Connect the power supply as shown on the unit-wiring label on the inside of the blower compartment door or the wiring schematic in Figure 11. The black furnace lead must be connected to the L1 (hot) wire from the power supply. The white furnace lead must be connected to neutral. Connect the green furnace lead (equipment ground) to the power supply ground. An alternate wiring method is to use a field provided 2” (5.08 cm) x 4” (10.2 cm) box and cover on the outside of the furnace. Route the furnace leads into the box using a protective bushing where the wires pass through the furnace panel. After making the wiring connections replace the wiring box cover and screws. Refer to Figure 10.
3. The furnace’s control system requires correct polarity of the power supply and a proper ground connection. Refer to Figure 11.

LOW VOLTAGE CONTROL WIRING CONNECTIONS

Install the field-supplied thermostat by following the instructions that come with the thermostat. With the thermostat set in the OFF position and the main electrical source disconnected, connect the thermostat wiring from the wiring connections to the terminal board on the ignition module, as shown in Figure 12. Apply strain relief to thermostat wires passing through cabinet. If air conditioning equipment is installed, use thermostat wiring to connect on the furnace control board to the compressor contactor on the condensing unit (unit outside). Refer to Figure 12.

IMPORTANT: Set the heat anticipator in the room thermostat to 0.40 amps. Setting it lower will cause short cycles. Setting it higher will cause the room temperature to exceed the set points.
SECTION VI: COMBUSTION AIR AND VENT SYSTEM

COMBUSTION AIR AND VENT SAFETY

This Category IV, dual certified direct vent furnace is designed for residential application. It may be installed without modification to the condensate system in a basement, garage, equipment room, alcove, attic or any other indoor location provided the space temperature is 32°F (0°C) or higher and where all required clearance to combustibles and other restrictions are met. The combustion air and the venting system must be installed in accordance with Section 5.3, Air for Combustion and Ventilation, of the National Fuel Gas Code Z223.1/NFPA 54 (latest edition), or Sections 7.2, 7.3 or 7.4 of CSA B149.1, National Gas and Propane Codes (latest edition) or applicable provisions of the local building code and these instructions.

IMPORTANT: The "VENT SYSTEM" must be installed as specified in these instructions for Manufactured (Mobile) Home and Modular Homes. The sealed combustion air / vent system is the only configuration that can be installed in a Manufactured (Mobile) Home.

Rubber couplings and hose clamps may be used to provide a secure connection between the furnace PVC pipe and ABS pipe. The rubber couplings can be either field supplied or the 90% Mobile Home Rubber Coupling Kit can be purchased through Source 1.

WARNING

Vertical vent termination must be secured for transit.

WARNING

This furnace may not be common vented with any other appliance, since it requires separate, properly sized air intake and vent lines. The furnace shall not be connected to any type of B, BW or L vent or vent connector, and not connected to any portion of a factory-built or masonry chimney. The furnace shall not be connected to a chimney flue serving a separate appliance designed to burn solid fuel.

CAUTION

When combustion air pipe is installed above a suspended ceiling or when it passes through a warm and humid space, the entire pipe in the unconditioned space must be insulated with 1/2" (1.27 cm) closed cell insulation or other heat resistant type insulation with a minimum "R" value of 3.5. The entire vent piping in the unconditioned space must be insulated with 1/2" (1.27 cm) insulation if it will be subjected to freezing temperatures such as routing through unheated areas or through an unused chimney.

COMBUSTION AIR/VENT PIPE SIZING

The size of pipe required will be determined by the furnace model, the total length of pipe required and the number of elbows required.

Table 4 lists the maximum equivalent length of pipe allowed for each model of furnace. The equivalent length of elbows is shown in Table 5. The equivalent length of the vent system is the total length of straight pipe PLUS the equivalent length of all of the elbows.

The following rules must also be followed:

1. Long radius (sweep) elbows are recommended. Standard elbows may be used, but since they have a longer equivalent length, they will reduce the total length of pipe that will be allowed. Short radius (plumbing vent) elbows are not allowed. The standard dimensions of the acceptable elbows are shown below.

2. The maximum equivalent length listed in Table 4 is for the vent piping and the air intake piping separately. For example, if the table allows 65 equivalent feet for a particular model, then the vent can have 65 equivalent feet of pipe, AND the combustion air intake can have another 65 equivalent feet of pipe.

ACCESSORY CONNECTIONS

The furnace control will allow power-switching control of various accessories. Refer to Figure 13, for connection details.

HUMIDIFIER CONNECTION

Two 1/4" (0.64 cm) spade terminals (HUM & NEUTRAL) for humidifier connections are located on the control board. The terminals provide 115 VAC (1.0 amp maximum) during circulating blower operation.

Install the field-supplied thermostat. The thermostat instructions for wiring are packed with the thermostat. With the thermostat set in the OFF position and the main electrical source disconnected, complete the low-voltage wiring from the thermostat to the terminal board on the ignition module. Connect Class 2 control wiring as shown in Figure 13. Electronic thermostats may require a "C" common connection as shown dashed in Figure 13.

Apply strain relief to thermostat wires passing through cabinet.

ELECTRONIC AIR CLEANER CONNECTION

Two 1/4" (0.64 cm) spade terminals (EAC H and NEUTRAL) for electronic air cleaner connections are located on the control board. The terminals provide 115 VAC (1.0 amp maximum) during circulating blower operation.

FIGURE 13: Accessory Connections

FIGURE 12: Single Stage Heat Thermostat Connections

FIGURE 11: Line Wiring Connections
3. Three vent terminal elbows (two for the vent and one for the combustion air intake) are already accounted for and need not be included in the equivalent length calculation.

4. All combustion air and vent pipe must conform to American National Standards Institute (ANSI) and American Society for Testing and Materials (ASTM) standards D1785 (Schedule 40 PVC), D2665 (PVC-DWV), F891 (PVC-DWV Cellular Core), D2261 (ABS-DWV) or F628 (Schedule 40 ABS). Pipe cement and primer must conform to ASTM Standard D2546 (PVC) or D2235 (ABS). If ABS pipe is to be used, any joint where ABS pipe is joined to PVC pipe must be glued with cement that is approved for use with BOTH materials. Metallic materials must not be used for venting or air intake.

5. If a flexible connector is used in the vent system, it must be made of a material that is resistant to acidic exposure and to at least 225°F temperature. Flexible connectors are also allowed in the combustion air pipe.

6. All models are supplied with 2” vent connections. When the pipe must be increased to 3” diameter, the transition from 2” to 3” must be done as close to the furnace as possible. For upflow models, the transition from 2” to 3” should be done immediately above the furnace. For downflow or horizontal models, the transition from 2” to 3” pipe should be done immediately after the drain tee or drain elbow.

7. In Canada, vents shall be certified to ULC S636, Standard for Type BH Gas Venting Systems. IPEX System 636 PVC is certified to this standard.

8. In Canada, the first three feet (900 mm) of the vent must be readily accessible for inspection.

TABLE 4: Maximum Equivalent Pipe Length

<table>
<thead>
<tr>
<th>Model Input BTUH (kW)</th>
<th>Pipe Size Inches (cm)</th>
<th>Maximum Equivalent Length feet (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60,000 (17.6)</td>
<td>2 (5.1)</td>
<td>65 (19.8)</td>
</tr>
<tr>
<td>80,000 (23.4)</td>
<td>3 (7.6)</td>
<td>90 (27.4)</td>
</tr>
<tr>
<td>100,000 (28.3)</td>
<td>2 (5.1)</td>
<td>30 (9.2)</td>
</tr>
<tr>
<td>100,000 (29.3)</td>
<td>3 (7.6)</td>
<td>90 (27.4)</td>
</tr>
</tbody>
</table>

TABLE 5: Equivalent Length of Fittings

<table>
<thead>
<tr>
<th>Fitting</th>
<th>Equivalent Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>2” 90° sweep elbow</td>
<td>5 feet of 2” pipe</td>
</tr>
<tr>
<td>2” 45° sweep elbow</td>
<td>2-1/2 feet of 2” pipe</td>
</tr>
<tr>
<td>2” 90° standard elbow</td>
<td>10 feet of 2” pipe</td>
</tr>
<tr>
<td>2” 45° standard elbow</td>
<td>5 feet of 2” pipe</td>
</tr>
<tr>
<td>3” 90° sweep elbow</td>
<td>5 feet of 3” pipe</td>
</tr>
<tr>
<td>3” 45° sweep elbow</td>
<td>2-1/2 feet of 3” pipe</td>
</tr>
<tr>
<td>3” 90° standard elbow</td>
<td>10 feet of 3” pipe</td>
</tr>
<tr>
<td>3” 45° standard elbow</td>
<td>5 feet of 3” pipe</td>
</tr>
<tr>
<td>2” corrugated connector</td>
<td>10 feet of 2” pipe</td>
</tr>
<tr>
<td>3” corrugated connector</td>
<td>10 feet of 3” pipe</td>
</tr>
</tbody>
</table>

Example:

An 80,000 BTUH furnace requires 32 feet of pipe and four 90° elbows. Using 2” pipe and standard elbows, the total equivalent length will be:

\[
\text{32 feet of 2” pipe} = 32 \text{ equivalent feet} \\
4 - 90° standard 2” elbows = (4 \times 10) = 40 \text{ equivalent feet} \\
\text{Total} = 72 \text{ equivalent feet of 2” pipe}
\]

This exceeds the 65 foot maximum equivalent length of 2” pipe allowed for that model and is thus not acceptable.

By using sweep elbows, the total equivalent length will be:

\[
\text{32 feet of 2” pipe} = 32 \text{ equivalent feet} \\
4 - 90° standard 2” elbows = (4 \times 5) = 20 \text{ equivalent feet} \\
\text{Total} = 52 \text{ equivalent feet of 2” pipe}
\]

This is less than the 65 foot maximum equivalent length of 2” pipe allowed for that model and is thus acceptable.

Alternatively, using 3” pipe and standard elbows, the total equivalent length will be:

\[
\text{32 feet of 3” pipe} = 32 \text{ equivalent feet} \\
4 - 90° standard 2” elbows = (4 \times 5) = 40 \text{ equivalent feet} \\
\text{Total} = 72 \text{ equivalent feet of 3” pipe}
\]

This is less than the 90 foot maximum equivalent length of 3” pipe allowed for that model and is thus acceptable.

FIGURE 14: Dimensions

TABLE 14: Dimensions

Elbow Dimensions

<table>
<thead>
<tr>
<th>Elbow</th>
<th>"A" Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>2° Standard</td>
<td>2-5/16"</td>
</tr>
<tr>
<td>3° Standard</td>
<td>3-1/16"</td>
</tr>
<tr>
<td>2° Sweep</td>
<td>3-1/4"</td>
</tr>
<tr>
<td>3° Sweep</td>
<td>4-1/16"</td>
</tr>
</tbody>
</table>

Dimensions are those required in Standard ASTM D-3311.

NOTE: Sidewall vent terminal may be used for sidewall vent terminations. Refer to part list in the back of the USERS INFORMATION AND SERVICE AND MAINTENANCE MANUAL for the terminal part number.

TABLE 7: Combustion Air Intake and Vent Connection Size at Furnace (All Models)

<table>
<thead>
<tr>
<th>Furnace Vent Connection Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnace Input</td>
</tr>
<tr>
<td>Intake Pipe Size</td>
</tr>
<tr>
<td>Vent Pipe Size</td>
</tr>
</tbody>
</table>

* Vent pipe size must be increased to 3” diameter after connection to furnace on this model.

IMPORTANT: Accessory concentric vent / intake termination kits 1CT0302 and 1CT0303 are available and approved for use with these furnaces.

IMPORTANT: Furnace vent pipe connections are sized for 2” (5.1 cm) pipe. Any pipe size change must be made outside the furnace casing in a vertical pipe section to allow proper drainage of condensate. An offset using two 45° (degree) elbows will be required for plenum clearance when the vent is increased to 3” (7.6 cm).
COMBUSTION AIR AND VENT PIPING ASSEMBLY

The final assembly procedure for the combustion air and vent piping is as follows:

1. Cut piping to the proper length beginning at the furnace.
2. Deburr the piping inside and outside.
3. Chamfer (bevel) the outer edges of the piping.
4. Dry-fit the vent piping assembly from the furnace to the outside termination checking for proper fit support and slope.
5. Dry-fit the combustion air piping assembly checking for proper fit, support and slope on the following systems:
 A. Sealed combustion air systems from the furnace to the outside termination.
 B. Ventilated combustion air systems from the furnace to the attic or crawl space termination.

CAUTION

Solvent cements are flammable and must be used in well-ventilated areas only. Keep them away from heat, sparks and open flames. Do not breathe vapors and avoid contact with skin and eyes.

6. Disassemble the combustion air and vent piping, apply cement primer and the cement per the manufactures instructions. Primer and cement must conform to ASTM D2564 for PVC, or ASTM D2235 for ABS piping.
7. All joints must provide a permanent airtight and watertight seal.

NOTE: Be sure to visually check each pipe connection to make sure the entire connection has primer on it. After applying the cement be sure to twist the pipe into the fitting to be sure you have a tight seal.
8. Support the combustion air and vent piping such that it is angled a minimum of 1/4" per foot (0.635 cm/m) so that condensate will flow back towards the furnace. Piping should be supported with pipe hangers to prevent sagging.
9. Seal around the openings where the combustion air and / or vent piping pass through the roof or sidewalls.

COMBUSTION AIR / VENT CLEARANCES

IMPORTANT: The vent must be installed with the following minimum clearances, and must comply with local codes and requirements.
VENT CLEARANCES

FIGURE 15: Home Layout

<table>
<thead>
<tr>
<th>Direct Vent Terminal Clearances</th>
<th>Canadian Installations(^1,3)</th>
<th>US Installation(^2,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Clearance above grade, veranda, porch, deck, or balcony</td>
<td>12 inches (30 cm)</td>
<td>12 inches (30 cm)</td>
</tr>
<tr>
<td>B. Clearance to window or door that may be opened</td>
<td>12 inches (30 cm) for models <100,000 BTUH (30 kW), 36 inches (91 cm) for models >100,000 BTUH (30 kW)</td>
<td>Two-pipe (direct vent) applications: 9 inches (23 cm) for models <50,000 BTUH (15 kW), 12 inches (30 cm) for models >50,000 BTUH (15 kW). ††</td>
</tr>
<tr>
<td>C. Clearance to permanently closed window</td>
<td>12 inches (30 cm)</td>
<td>12 inches (30 cm)</td>
</tr>
<tr>
<td>D. Vertical clearance to ventilated soffit located above the terminal within a horizontal distance of 2 feet (61 cm) from the center line of the terminal</td>
<td>12 inches (30 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
<td>12 inches (30 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
<tr>
<td>E. Clearance to unventilated soffit</td>
<td>12 inches (30 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
<td>12 inches (30 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
<tr>
<td>F. Clearance to outside corner</td>
<td>12 inches (30 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
<td>12 inches (30 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
<tr>
<td>G. Clearance to inside corner</td>
<td>3 feet (91 cm)</td>
<td>3 feet (91 cm)</td>
</tr>
<tr>
<td>H. Clearance to each side of center line extended above meter/regulator assembly</td>
<td>Above a meter/regulator assembly within 3 feet (91 cm) horizontally of the vertical center-line of the regulator vent outlet to a maximum vertical distance of 15 feet (4.5 cm) above the meter/regulator assembly.</td>
<td>Above a meter/regulator assembly within 3 feet (91 cm) horizontally of the vertical center-line of the regulator vent outlet to a maximum vertical distance of 15 feet (4.5 cm) above the meter/regulator assembly.</td>
</tr>
<tr>
<td>I. Clearance to service regulator vent outlet</td>
<td>3 feet (91 cm)</td>
<td>3 feet (91 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
<tr>
<td>J. Clearance to nonmechanical air supply inlet to building or the combustion air inlet to any other appliance</td>
<td>12 inches (30 cm) for models <100,000 BTUH (30 kW), 36 inches (91 cm) for models >100,000 BTUH (30 kW)</td>
<td>Two-pipe (direct vent) applications: 9 inches (23 cm) for models <50,000 BTUH (15 kW), 12 inches (30 cm) for models >50,000 BTUH (15 kW).</td>
</tr>
<tr>
<td>K. Clearance to a mechanical supply inlet</td>
<td>6 feet (1.83 m)</td>
<td>3 feet (91 cm) above if within 10 feet (3 cm) horizontally</td>
</tr>
<tr>
<td>L. Clearance above paved sidewalk or paved driveway located on public property</td>
<td>7 feet (2.13 m)†</td>
<td>7 feet (2.13 m) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
<tr>
<td>M. Clearance under veranda, porch, deck, or balcony</td>
<td>12 inches (30 cm)</td>
<td>12 inches (30 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
</tbody>
</table>

1. In accordance with the current CSA B149.1-00, Natural Gas and Propane Installation Code.
2. In accordance with the current ANSI Z223.1 / NFPA 54, National Gas Code.

† A vent shall not terminate directly above a sidewalk or paved driveway that is located between two single family dwellings and serves both dwellings.

†† Permitted only if veranda, porch, deck, or balcony is fully open on a minimum of two sides beneath the floor and the distance between the top of the vent terminal and the underside of the veranda, porch, or deck is greater than 1 foot (30 cm) as specified in CSA B149.1-00.

A vent shall not terminate less than 1 foot (30 cm) above a grade level.

Avoid areas where condensate drippage may cause problems such as above planters, patios, or adjacent to windows where steam may cause fogging.

A terminus of a vent shall be fitted with a cap in accordance with the vent manufacturer's installation instructions, or in accordance with the installation instructions for a special venting system.

IMPORTANT: Consideration must be given for degradation of building materials by flue gases. Sidewall termination may require sealing or shielding of building surfaces with a corrosion resistant material to protect against combustion product corrosion. Consideration must be given to wind direction in order to prevent flue products and/or condensate from being blown against the building surfaces. If a metal shield is used it must be a stainless steel material at a minimum dimension of 20 inches. It is recommended that a retaining type collar be used that is attached to the building surface to prevent movement of the vent pipe.

Responsibility for the provision of proper adequate venting and air supply for application shall rest with the installer.

Vent shall extend high enough above building, or a neighboring obstruction, so that wind from any direction will not create a positive pressure in the vicinity of the vent.
VENT SYSTEM
This furnace is certified to be installed with one of two possible vent configurations.
1. Horizontal vent system. This vent system can be installed completely horizontal or combinations of horizontal, vertical, or offset using elbows.
2. Vertical vent system. This vent system can be installed completely vertical or a combination of horizontal, vertical, or offset using elbows.

HORIZONTAL VENT APPLICATIONS AND TERMINATION
When selecting the location for a horizontal combustion air / vent termination, the following should be considered:
1. Observe all clearances listed in vent clearances in these instructions.
2. If installing a vertical venting system through any unconditioned space such as an attic or crawl space, it must be completely insulated to a minimum "R" value of 3.5 either by blown in or wrapped insulation.
3. Termination should be positioned where vent vapors will not damage plants or shrubs or air conditioning equipment.
4. Termination should be located where it will not be affected by wind gusts, light snow, airborne leaves or allow recirculation of flue gases.
5. Termination should be located where it will not be damaged or exposed to flying stones, balls, etc.
6. Termination should be positioned where vent vapors are not objectionable.
7. Horizontal portions of the vent system must slope upwards and be supported to prevent sagging. The vent system may be supported by the use of clamps or hangers secured to a permanent part of the structure every 4 ft. (1.22 m) and that it is angled a minimum of 1/4" per foot (0.635 cm/m) so that condensate will flow towards the furnace.
8. Sealed combustion air systems must be installed so the vent and the combustion air pipes terminate in the same atmospheric zone. Refer to Figure 18.

DOWNFLOW VENT ASSEMBLY
1. Place the 2" (5.1 cm) 45° PVC street elbow on the vent connection shown in Figure 16.
2. Place the 2" (5.1 cm) PVC WYE ("Y") assembly on the 2" (5.1 cm) 45° PVC street elbow as shown in Figure 16.
3. Locate the rubber condensate hose in front of the blower access panel.
4. Slide the hose through the hole in the top cover, and insert the hose on to the barbed fitting on the bottom of the 2" (5.1 cm) PVC WYE ("Y") assembly as shown in Figure 16.
Place 2" rubber sleeve of PVC pipe at top of furnace and place a 2" piece of PVC pipe in the other end of the 2" rubber sleeve.

FIGURE 16: Downflow Vent Assembly

VERTICAL VENT APPLICATIONS AND TERMINATION
Roof mounted vertical terminals may be field fabricated. Standard PVC/SR fittings may be used. If installing a vertical venting system through any unconditioned space such as an attic or crawl space it must be completely insulated to a minimum "R" value of 3.5.
1. Observe all clearances listed in vent clearances in these instructions.
2. Termination should be positioned where vent vapors are not objectionable.
3. Termination should be located where it will not be affected by wind gusts, light snow, or allow recirculation of flue gases.
4. Termination should be located where it cannot be damaged, plugged or restricted by tree limbs, leaves and branches.
5. Horizontal portions of the vent system must slope upwards and be supported to prevent sagging. The vent system may be supported by the use of clamps or hangers secured to a permanent part of the structure every 4 ft. (1.22 m) and that it is angled a minimum of 1/4" per foot (0.635 cm/m) so that condensate will flow towards the furnace.
VENTING MULTIPLE UNITS

Only the sealed combustion system can be used for installations requiring more than one furnace in a structure. A separate sealed combustion air pipe and a separate vent pipe must be installed for each furnace. Do not connect more than one furnace to a combustion air pipe or a vent pipe. The combustion air and vent termination must be located as shown in Figure 19 or 20.

FIGURE 19: Double Horizontal Sealed Combustion Air and Vent Termination

FIGURE 20: Double Vertical Sealed Combustion Air and Vent Termination

COMBUSTION AIR SUPPLY

All installations must comply with Section 5.3, Air for Combustion and Ventilation of the National Fuel Gas Code, ANSI Z223.1 or Sections 7.2, 7.3 or 7.4 of CAN/CGA B149.1 or .2 Installation Code - latest editions.

This furnace is certified to be installed with one of three possible combustion air intake configurations.

1. **OUTDOOR COMBUSTION AIR:** This is a sealed combustion air configuration where the combustion air is supplied through a PVC or ABS pipe that is connected to the PVC coupling attached to the burner box and is terminated in the same atmospheric zone as the vent. This type of installation is approved on all models. Refer to Figures 21 & 23.

2. **AMBIENT COMBUSTION AIR (Modular Home Installations Only):** Combustion air is supplied from the area surrounding the appliance and from areas or rooms adjacent to the space surrounding the appliance. This may be from within the space in a non-confined location or it may be brought into the furnace area from outdoors through permanent openings or ducts. It is not piped directly into the burner box. A single, properly sized pipe from the furnace vent connector to the outdoors must be provided. For downflow models combustion air is brought into the furnace through the unit top panel opening. Do not install a pipe into the combustion air pipe at the top of the furnace. Refer to Figure 22.

3. **VENTILATED COMBUSTION AIR (Modular Home Installations Only):** Combustion air is supplied through a PVC or ABS pipe that is connected to the PVC coupling attached to the burner box and is terminated in a ventilated attic or crawl space. The combustion air and the vent pipes are not terminated in the same atmospheric zone. Refer to Figure 24 for crawl space and attic termination. Only the combustion air intake may terminate in the attic. The vent must terminate outside.

Outdoor Combustion Air

Combustion Air Intake/Vent Connections

This installation requires combustion air to be brought in from outdoors. This requires a properly sized pipe (shown in Figure 21) that will bring air in from the outdoors to the furnace combustion air intake collar on the burner box. The second pipe is the furnace vent pipe.

WARNING

This type of installation requires that the supply air to the appliance(s) be of a sufficient amount to support all of the appliance(s) in the area. Operation of a mechanical exhaust, such as an exhaust fan, kitchen ventilation system, clothes dryer or fireplace may create conditions requiring special attention to avoid unsatisfactory operation of gas appliances. A venting problem or a lack of supply air will result in a hazardous condition, which can cause the appliance to soot and generate dangerous levels of CARBON MONOXIDE, which can lead to serious injury, property damage and / or death.
TABLE 8: Estimated Free Area

The blocking effects of louvers, grilles and screens must be given consideration in calculating free area. If the free area of a specific louver or grille is not known, refer to Table 8, to estimate free area.

The blocking effects of louvers, grilles and screens must be given consideration in calculating free area. If the free area of a specific louver or grille is not known, refer to Table 8, to estimate free area.

Combustion Air Source From Outdoors

The blocking effects of louvers, grilles and screens must be given consideration in calculating free area. If the free area of a specific louver or grille is not known, refer to Table 8, to estimate free area.

TABLE 8: Estimated Free Area

<table>
<thead>
<tr>
<th>Louver or Grille</th>
<th>Wood or Metal</th>
<th>Louvers or Grille</th>
<th>Wood 20-25%*</th>
<th>Metal 60-70% *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screens*</td>
<td>1/4" (0.635 cm) mesh or larger 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do not use less than 1/4" (0.635 cm) mesh

Free area or louvers and grilles varies widely; the installer should follow the louver or grille manufacturer’s instructions.

TABLE 9: Free Area - Outdoor Air

<table>
<thead>
<tr>
<th>BTUH Input Rating (2,000 BTUH)</th>
<th>Minimum Free Area Required for Each Opening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Duct</td>
<td>Vertical Duct or Opening to Outside (4,000 BTUH)</td>
</tr>
<tr>
<td>60,000</td>
<td>30 sq. in. (194 cm²) 15 sq. in. (97 cm²) 5" (13 cm)</td>
</tr>
<tr>
<td>80,000</td>
<td>40 sq. in. (258 cm²) 20 sq. in. (129 cm²) 6" (15 cm)</td>
</tr>
<tr>
<td>100,000</td>
<td>50 sq. in. (258 cm²) 25 sq. in. (161 cm²) 6" (15 cm)</td>
</tr>
</tbody>
</table>

EXAMPLE: Determining Free Area.

Appliance 1: Appliance 1: Total Input 100,000 + 30,000 = (130,000 + 4,000) = 32.5 Sq. In. Vertical Openings + 30,000 = (130,000 + 2,000) = 65 Sq. In. Horizontal Openings

TABLE 10: Unconfined Space Minimum Area in Square Inch

<table>
<thead>
<tr>
<th>BTUH Input Rating</th>
<th>Minimum Free Area Required for Each Opening</th>
</tr>
</thead>
<tbody>
<tr>
<td>60,000</td>
<td>80 in² (516 cm²)</td>
</tr>
<tr>
<td>80,000</td>
<td>60 in² (387 cm²)</td>
</tr>
<tr>
<td>100,000</td>
<td>60 in² (387 cm²)</td>
</tr>
</tbody>
</table>

AIR SUPPLY OPENINGS AND DUCTS

1. An opening may be used in lieu of a duct to provide the outside air supply to an appliance unless otherwise permitted by the authority having jurisdiction. The opening shall be located within 12" (30.5 cm) horizontally from the burner level of the appliance. Refer to “AIR SOURCE FROM OUTDOORS AND VENT AND SUPPLY AIR SAFETY CHECK” in these instructions for additional information and safety check procedure.

2. The duct shall be either metal, or a material meeting the class 1 requirements of CAN4-S110 Standard for Air Ducts.

3. The duct shall be at least the same cross-sectional area as the free area of the air supply inlet opening to which it connects.

4. The duct shall terminate within 12 in (30.5 cm) above, and within 24 in (61 cm) horizontally from, the burner level of the appliance having the largest input.

COMBUSTION AIR SOURCE FROM OUTDOORS

1. Two permanent openings, one within 12 in (30.5 cm) of the top and one within 12 in (30.5 cm) of bottom of the confined space. Two permanent openings, shall communicate directly or by means of ducts with the outdoors, crawl spaces or attic spaces.

2. One permanent opening, commencing within 12 in (30.5 cm) of the top of the enclosure shall be permitted where the equipment has clearances of at least 1 in (2.54 cm) from the sides and back and 6 in (15.24 cm) from the front of the appliance. The opening shall communicate directly with the outdoors and shall have a minimum free area of

 a. 1 square in per 3000 Btu per hour (6.45 cm² per 8797 kW) of the total input rating of all equipment located in the enclosure. Do not use less than 1/4" (0.635 cm) mesh
 b. Not less than the sum of all vent connectors in the confined space.

3. The duct shall be at least the same cross-sectional area as the free area of the air supply inlet opening to which it connects.

4. The blocking effects of louvers, grilles and screens must be given consideration in calculating free area. If the free area of a specific louver or grille is not known.
Vent and Supply (Outside) Air Safety Check Procedure

NOTE: HUD approved Direct Vent (Sealed Combustion) and/or Direct Vent (Sealed Combustion) furnaces are exempt from the Vent and Supply Air Safety Check Procedure. All other fuel-burning appliances should be checked for proper operation.

Follow the procedure in ANSI Z223.1 National Fuel Gas Code. Refer to the section on the “Recommended Procedure for Safety Inspection of an Existing Appliance” or in Canada B149.1-00 Natural Gas and Propane Installation Code section on “Venting Systems and Air Supply for Appliances” and all local codes. In addition to the procedure specified in ANSI Z223.1, it is recommended that you follow the venting safety procedure below. This procedure is designed to detect an inadequate ventilation system that can cause the appliances in the area to operate improperly causing unsafe levels of Carbon Monoxide or an unsafe condition to occur.

1. Inspect the venting system for proper size and horizontal pitch. Determine that there is no blockage, restriction, leakage, corrosion or other deficiencies, which could cause an unsafe condition.
2. Close all building doors and windows and all doors.
3. Turn on clothes dryers and TURN ON any exhaust fans, such as range hoods and bathroom exhausts, so they shall operate at maximum speed. Open the fireplace dampers. Do not operate a summer exhaust fan.
4. Follow the lighting instructions. Place the appliance being inspected in operation. Adjust thermostat so the appliance shall operate continuously.
5. Test each appliance (such as a water heater) equipped with a draft hood for spillage (down-draft or no draft) at the draft hood relief opening after 5 minutes of main burner operation. Appliances that do not have draft hoods need to be checked at the vent pipe as close to the appliance as possible. Use a combustion analyzer to check the CO2 and CO levels of each appliance. Use a draft gauge to check for a downdraft or inadequate draft condition.
6. After it has been determined that each appliance properly vents when tested as outlined above, return doors, windows, exhaust fans, fireplace dampers and any other gas burning appliance to their normal condition.
7. If improper venting is observed during any of the above tests, a problem exists with either the venting system or the appliance does not have enough combustion air (Supply Air from outside) to complete combustion. This condition must be corrected before the appliance can function safely.

NOTE: An unsafe condition exists when the CO reading exceeds 40 ppm and the draft reading is not in excess of - 0.1 in. W.C. (-25 kPa) with all of the appliance(s) operating at the same time.

Any corrections to the venting system and / or to the supply (outside) air system must be in accordance with the National Fuel Gas Code Z223.1 or CAN/CGA B149.1-00 Natural Gas and Propane Installation Code (latest editions). If the vent system must be resized, follow the appropriate tables in Appendix G of the above codes or for this appliance and refer to Tables 4 & 5 of these instructions.

NOTE: HUD approved Direct Vent (Sealed Combustion) and/or Direct Vent (Sealed Combustion) furnaces are exempt from the Vent and Supply Air Safety Check Procedure. All other fuel-burning appliances should be checked for proper operation.

Follow the procedure in ANSI Z223.1 National Fuel Gas Code. Refer to the section on the “Recommended Procedure for Safety Inspection of an Existing Appliance” or in Canada B149.1-00 Natural Gas and Propane Installation Code section on “Venting Systems and Air Supply for Appliances” and all local codes. In addition to the procedure specified in ANSI Z223.1, it is recommended that you follow the venting safety procedure below. This procedure is designed to detect an inadequate ventilation system that can cause the appliances in the area to operate improperly causing unsafe levels of Carbon Monoxide or an unsafe condition to occur.

1. Inspect the venting system for proper size and horizontal pitch. Determine that there is no blockage, restriction, leakage, corrosion or other deficiencies, which could cause an unsafe condition.
2. Close all building doors and windows and all doors.
3. Turn on clothes dryers and TURN ON any exhaust fans, such as range hoods and bathroom exhausts, so they shall operate at maximum speed. Open the fireplace dampers. Do not operate a summer exhaust fan.
4. Follow the lighting instructions. Place the appliance being inspected in operation. Adjust thermostat so the appliance shall operate continuously.
5. Test each appliance (such as a water heater) equipped with a draft hood for spillage (down-draft or no draft) at the draft hood relief opening after 5 minutes of main burner operation. Appliances that do not have draft hoods need to be checked at the vent pipe as close to the appliance as possible. Use a combustion analyzer to check the CO2 and CO levels of each appliance. Use a draft gauge to check for a downdraft or inadequate draft condition.
6. After it has been determined that each appliance properly vents when tested as outlined above, return doors, windows, exhaust fans, fireplace dampers and any other gas burning appliance to their normal condition.
7. If improper venting is observed during any of the above tests, a problem exists with either the venting system or the appliance does not have enough combustion air (Supply Air from outside) to complete combustion. This condition must be corrected before the appliance can function safely.

NOTE: An unsafe condition exists when the CO reading exceeds 40 ppm and the draft reading is not in excess of - 0.1 in. W.C. (-25 kPa) with all of the appliance(s) operating at the same time.

Any corrections to the venting system and / or to the supply (outside) air system must be in accordance with the National Fuel Gas Code Z223.1 or CAN/CGA B149.1-00 Natural Gas and Propane Installation Code (latest editions). If the vent system must be resized, follow the appropriate tables in Appendix G of the above codes or for this appliance and refer to Tables 4 & 5 of these instructions.

Ventilated Combustion Air (Modular Home Installations Only)

The ventilated attic space or crawl space from which the combustion air is taken must comply with the requirements specified in "COMBUSTION AIR SOURCE FROM OUTDOORS" in this instruction or in Section 5.3, Air for Combustion and Ventilation of the National Fuel Gas Code, ANSI Z223.1 (latest edition). This type installation requires two properly sized pipes. One brings combustion air from a properly ventilated attic space or crawl space and a second pipe that extends from the furnace vent connection (top right of unit) to the exterior of the building. Refer to Tables 4 & 5 for intake pipe sizing, allowable length and elbow usage. Follow all notes, procedures and required materials in the SEALED COMBUSTION AIR SUPPLY section in these instructions when installing the combustion air pipe from the unit and into a ventilated attic space or crawl space. DO NOT terminate vent pipe in an Attic or Crawl Space.

Ventilated Combustion Air Termination (Modular Home Installations Only)

Refer to Figure 24 for required attic termination for the combustion air intake pipe. For attic termination, use two 90 elbows with the open end in a downward position. Be sure to maintain 12" (30.5 cm) clearance above any insulation, flooring or other material.

A crawl space combustion air installation consists of a straight pipe from the PVC coupling on the burner box that extends into the crawl space and terminates with a 1/4" (0.63 cm) mesh screen and no elbows.

FIGURE 24: Attic Combustion Air Termination

Specially Engineered Installations

The above requirements shall be permitted to be waived where special engineering, approved by the authority having jurisdiction, provides an adequate supply of air for combustion, ventilation and dilution of flue gases.

WARNING

Be sure to instruct the owner not to block this intake pipe.

SECTION VII: CONDENSATE PIPING

CONDENSATE DRAIN

The condensate drain connection is provided in the furnace for field installation. It consists of the hoses shown, a NPT male connection, and a 1/2" (1.27 cm) female x 3/4" (1.9 cm) PVC slip coupling. Refer to Figure 25 for the condensate hose sizes and condensate drain connections.

IMPORTANT: The condensate drain from the furnace may be connected in common with the drain from an air conditioning coil if allowed by local code.

IMPORTANT: Condensate must be disposed of properly. Follow local plumbing or wastewater codes. The drain line must maintain a 1/4" per foot (0.635 cm per meter) slope to the drain.

CONDENSATE DRAIN TRAP AND DRAIN FREEZE PROTECTION

Special precautions MUST be made if installing furnace in an area, which may drop below freezing. This can cause improper operation or damage to the equipment. If the furnace is installed in an area that has the potential of freezing, the drain line and the drain trap must be protected. Use a 3 to 6 watt per foot at 115 vac, 40° F (4.4° C) self-regulating, shielded and waterproof heat tape. Wrap the drain trap and the drain line with the heat tape and secure with ties. Follow the heat tape manufacturer's recommendations.
TABLE 11: Condensate Drain Hose

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Hose Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>028-15156-000</td>
<td>1</td>
<td>Drain tube - Condensate pan (Down flow)</td>
</tr>
<tr>
<td>028-15158-000</td>
<td>9</td>
<td>Drain tube - Vent system (Horizontal RT.) Before Tee (Horizontal LT.)</td>
</tr>
<tr>
<td>028-15168-000</td>
<td>3</td>
<td>Drain tube - Inducer (Down flow)</td>
</tr>
<tr>
<td>028-15169-002</td>
<td>5</td>
<td>Drain tube - After Tee (Down flow)</td>
</tr>
<tr>
<td>028-15175-000</td>
<td>4</td>
<td>Drain tube - Rain gutter (Down flow & Horizontal LT.)</td>
</tr>
<tr>
<td>028-13309-004</td>
<td>8</td>
<td>Drain tube - P-trap (All models)</td>
</tr>
<tr>
<td>028-13339-001</td>
<td>2</td>
<td>Drain tube - Inducer (Horizontal LT.) Vent system (Downflow)</td>
</tr>
</tbody>
</table>

DOWNFLOW/HORIZONTAL CONDENSATE INTERNAL DRAIN CONFIGURATIONS

Downflow - Refer to Figure 26

Furnace is shipped with one end of condensate hose #2 left open in the furnace. If the provided Wye’s drain is aligned with the opening in the top of the furnace, hose #2 can be used. If it is desired that the Wye and street elbow assembly point away from the opening in the casing top, then the #2 hose will have to be replaced with provided #9 hose. The dogleg end of hose #9 hose should be installed on the drain of the Wye.

NOTE: Hoses 1, 2, 3, 4, and 5 are installed in the furnace when shipped. Hoses 8 and 9 and shipped loose.

CAUTION

Ensure all condensate hoses are pushed all the way down on the condensate trap, and barbed fittings.

CAUTION

Plug all unused condensate trap, condensate pan and inducer drain connection points using plugs provided.

FIGURE 26: Downflow Condensate Drain Hose Configuration
CONDENSATE DRAIN TERMINATION

DO NOT terminate condensate drain in a chimney, or where the drain line may freeze. The line must terminate at an inside drain to prevent freezing of the condensate and possible property damage. DO NOT trap the drain line at any other location than at the condensate drain trap supplied with the furnace. A condensate sump pump MUST be used if required by local codes, or if no indoor floor drain is available. The condensate sump pump must be approved for use with acidic condensate.

CONDENSATE DRAIN PRE-START UP PROCEDURE

The condensate trap must be filled with water before putting the furnace into operation. Perform the following procedures only after the condensate trap has been properly piped to a drain connection using the procedure in this instruction. The recommended procedure is as follows:

1. Disconnect the condensate drain hose from the induced draft blower discharge.
2. Elevate this hose and fill with water using a funnel.
3. Replace the condensate drain hose and clamps. If this procedure is not followed, the unit may not properly drain on initial start up.

SECTION VIII: SAFETY CONTROLS

CONTROL CIRCUIT FUSE

A 3-amp fuse is provided on the control circuit board to protect the 24-volt transformer from overload caused by control circuit wiring errors. This is an ATO 3, automotive type fuse and is located on the control board.

BLOWER DOOR SAFETY SWITCH

This unit is equipped with an electrical interlock switch mounted in the blower compartment. This switch interrupts all power at the unit when the panel covering the blower compartment is removed. Electrical supply to this unit is dependent upon the panel that covers the blower compartment being in place and properly positioned.

ROLLOUT SWITCH CONTROLS

These controls are mounted on the burner box assembly. If the temperature in the burner box exceeds its set point, the ignition control and the gas valve are de-energized. The operation of this control indicates a malfunction in the combustion air blower, heat exchanger or a blocked vent pipe connection. Corrective action is required. These are manual reset controls that must be reset before operation can continue.

PRESSURE SWITCHES

This furnace is supplied with a pressure switch, which monitors the flow through the combustion air/vent piping system. This switch de-energizes the ignition control module and the gas valve if any of the following conditions are present. Refer to Figure 27 for tubing connections.

1. Blockage of combustion air piping or terminal.
2. Blockage of vent piping or terminal.
3. Failure of combustion air blower motor.
4. Blockage of condensate drain piping.

SECTION IX: START-UP AND ADJUSTMENTS

The initial start-up of the furnace requires the following additional procedures:

IMPORTANT: All electrical connections made in the field and in the factory should be checked for proper tightness.

When the gas supply is initially connected to the furnace, the gas piping may be full of air. In order to purge this air, it is recommended that the ground union be loosened until the odor of gas is detected. When gas is detected, immediately retighten the union and check for leaks. Allow five minutes for any gas to dissipate before continuing with the start-up procedure.

Perform the following procedures only after the condensate trap has been properly piped to a drain connection using the procedure in this instruction. Be sure proper ventilation is available to dilute and carry away any vented gas.
TOOLS AND INFORMATION THAT WILL BE REQUIRED IN ORDER TO PROPERLY PERFORM THE FURNACE STARTUP PROCEDURE.

1. Call the local gas supplier to obtain heating value of the natural gas. If you cannot obtain the heating value of the gas from the gas supplier, you may use a default value of 1030 BTU/SCF (38.4 MJ/m³).
2. You will need a thermometer or portable digital thermometer to read the supply and return air temperatures.
3. You will need a U-tube manometer or digital equipment that has the ability to read pressures between 0 – 15” in.w.c (0 - 3.73 kPa) in order to measure the gas line and the manifold pressures.
4. You will need a 3/32” Allen wrench for the pressure port plugs in the gas valve.
5. You will need 2 pieces of 1/8” (0.3 cm) ID flexible tubing that is 12” (30 cm) in length, 2 – pieces of 1/8” (0.3 cm) tubing that are 4” (10.1 cm) in length, a 1/8” (0.3 cm) tee and a 1/8” (0.3 cm) adapter to connect the U-tube manometer or the digital pressure measuring equipment to the gas valve pressure ports.

There is an accessory kit (1PK0601) available from Source 1, which has the following items:
- 1 - 12” (30 cm) length x 1/8” (0.3 cm) diameter tubing
- 2 – pieces of 4” (10 cm) length x 1/8” (0.3 cm) diameter tubing
- 1 - 5/16” (0.8 cm) tee
- 1 - 5/16” (0.8 cm) x 1/8” (0.3 cm) reducing coupling
- 1 - 1/8” (0.3 cm) adapter

There is a accessory kit (1PK0602) available from Source 1, which has the following items:
- 12” (30 cm) length x 1/8” (0.3 cm) diameter tubing
- 2 – pieces of 4” (10 cm) length x 1/8” (0.3 cm) diameter tubing
- 1 - 5/16” (0.8 cm) tee
- 1 - 5/16” (0.8 cm) x 1/8” (0.3 cm) reducing coupling
- 1 - 1/8” (0.3 cm) adapter
- 1 - Dwyer – Manometer

These items are required in order to properly perform the required startup procedure.

IGNITION SYSTEM SEQUENCE

1. Turn the gas supply ON at external valve and main gas valve.
2. Set the thermostat above room temperature to call for heat.
3. System start-up will occur as follows:
 a. The induced draft blower motor will start and come up to speed. Shortly after inducer start-up, the hot surface igniter will glow for about 17 seconds.
 b. After this warm up, the ignition module will energize (open) the main gas valve.
 c. After flame is established, the supply air blower will start in about 30 seconds.

WARNING

FIRE OR EXPLOSION HAZARD
Failure to follow the safety warnings exactly could result in serious injury, death or property damage.

Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury or loss of life.

IMPORTANT: Burner ignition may not be satisfactory on first startup due to residual air in the gas line or until gas manifold pressure is adjusted. The ignition control will make 3 attempts to light before locking out.

With furnace in operation, check all of the pipe joints, gas valve connections and manual valve connections for leakage using an approved gas detector, a non-corrosive leak detection fluid, or other leak detection methods. Take appropriate steps to stop any leak. If a leak persists, replace the component.

The furnace and its equipment shutoff valve must be disconnected from the gas supply piping system during any pressure testing of that system at test pressures in excess of 1/2 PSI (3.45 kPa).

The furnace must be isolated from the gas supply piping system by closing the equipment shutoff valve during any pressure testing of the gas supply piping system.

CALCULATING THE FURNACE INPUT (NATURAL GAS)

NOTE: Burner orifices are sized to provide proper input rate using natural gas with a heating value of 1030 BTU/Ft³ (38.4 MJ/m³). If the heating value of your gas is significantly different, it may be necessary to replace the orifices.

NOTE: Front door of burner box must be secured when checking gas input.

1. Turn off all other gas appliances connected to the gas meter.
2. At the gas meter, measure the time (with a stop watch) it takes to use 2 cubic ft. (0.0566 m³) of gas.
3. Calculate the furnace input by using one of the following equations.

Unitary Products Group 21
In the USA use the following formula to calculate the furnace input.

For natural gas multiply the heat content of the gas BTU/SCF or Default 1030 BTU/SCF (38.4 MJ/m³), times 2 cubic ft. (0.056 m) of gas measured at the gas meter, times a barometric pressure and temperature correction factor of 0.960; times 3600, then divided by the time (In seconds) it took to measure 2 cubic ft. (0.056 m) of gas from the gas meter.

For propane (LP) gas multiply the heat content of the gas BTU/SCF or Default 2500 BTU/SCF (93.15 MJ/m³), times 1 cubic ft. (0.028 m) of gas measured at the gas meter, times a barometric pressure and temperature correction factor of 0.960; times 3600, then divided by the time (In seconds) it took to measure 1 cubic ft. (0.028 m) of gas from the gas meter.

The formula for US input calculation using a cubic foot gas meter:

<table>
<thead>
<tr>
<th>BTU/ft³ x 2 cu.ft. x 0.960 x 3600</th>
<th>=</th>
<th>BTU/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURAL GAS INPUT CALCULATION EXAMPLE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1030 x 2 x 0.960 x 3600</td>
<td>=</td>
<td>75,666.90</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1030 BTU/SCF</td>
<td></td>
</tr>
</tbody>
</table>

In Canada you will use the following formula to calculate the furnace input if you are using a cubic foot gas meter.

For Natural Gas multiply the Heat content of the gas MJ/m³ (or Default 38.4), times 2 cubic ft. of gas x 0.028 to convert from cubic feet to cubic meters measured at the gas meter, times a barometric pressure and temperature correction factor of 0.960; times 3600, then divided by the time it took to measure 2 cubic ft. (0.056 m) of gas from the gas meter.

For Propane (LP) Gas multiply the Heat content of the gas MJ/m³ (or Default 93.15), times 1 cu. ft. of gas x 0.028 to convert from cubic feet to cubic meters measured at the gas meter, times a barometric pressure and temperature correction factor of 0.960; times 3600, then divided by the time it took to measure 1 cubic ft. (0.028 m) of gas from the gas meter.

The formula for metric input calculation using a cubic foot gas meter:

<table>
<thead>
<tr>
<th>MJ/m³ x 2 cu.ft. x 0.028 x 0.960 x 3600</th>
<th>=</th>
<th>MJ/H x 0.2777 = kW x 3412.14 = BTU/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURAL GAS INPUT CALCULATION EXAMPLE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.4 x 2 x 0.028 x 0.960 x 3600</td>
<td>=</td>
<td>82.12 x 0.2777 = 22.80 x 3412.14 = 77,796.80</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1030 BTU/SCF = 38.4 MJ/m³</td>
<td></td>
</tr>
</tbody>
</table>

In Canada use the following formula to calculate the furnace input if you are using a gas meter that measures cubic meters.

For Natural Gas multiply the Heat content of the gas MJ/m³ (or Default 38.4), times 0.10 m³ of gas measured at the gas meter, times a barometric pressure and temperature correction factor of 0.960; times 3600, then divided by the time it took to measure 0.10 m³ of gas from the gas meter.

For Propane (LP) Gas multiply the Heat content of the gas MJ/m³ (or Default 93.15), times 0.10 m³ of gas measured at the gas meter, times a barometric pressure and temperature correction factor of 0.960; times 3600, then divided by the time it took to measure 0.10 m³ of gas from the gas meter.

The formula for metric input calculation using a cubic meter gas meter:

<table>
<thead>
<tr>
<th>MJ/m³ x m³ x 0.960 x 3600</th>
<th>=</th>
<th>MJ/H x 0.2777 = kW x 3412.14 = BTU/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURAL GAS INPUT CALCULATION EXAMPLE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.4 x 0.1 x 0.960 x 3600</td>
<td>=</td>
<td>82.94 x 0.2777 = 23.03 x 3412.14 = 78,581.60</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1030 BTU/SCF = 38.4 MJ/m³</td>
<td></td>
</tr>
</tbody>
</table>

In Canada use the following formula to calculate the furnace input if you are using a gas meter that measures cubic meters.

For Natural Gas multiply the Heat content of the gas MJ/m³ (or Default 38.4), times 0.10 m³ of gas measured at the gas meter, times a barometric pressure and temperature correction factor of 0.960; times 3600, then divided by the time it took to measure 0.10 m³ of gas from the gas meter.

For Propane (LP) Gas multiply the Heat content of the gas MJ/m³ (or Default 93.15), times 0.10 m³ of gas measured at the gas meter, times a barometric pressure and temperature correction factor of 0.960; times 3600, then divided by the time it took to measure 0.10 m³ of gas from the gas meter.

The formula for metric input calculation using a cubic meter gas meter:

<table>
<thead>
<tr>
<th>MJ/m³ x m³ x 0.960 x 3600</th>
<th>=</th>
<th>MJ/H x 0.2777 = kW x 3412.14 = BTU/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURAL GAS INPUT CALCULATION EXAMPLE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.4 x 0.1 x 0.960 x 3600</td>
<td>=</td>
<td>83.19 x 0.2777 = 23.10 x 3412.14 = 78,581.60</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>2500 BTU/SCF = 38.4 MJ/m³</td>
<td></td>
</tr>
</tbody>
</table>

DO NOT ADJUST the manifold pressure regulator if the actual input is equal to or within 8% less than the furnace input specified on the rating plate or if the furnace rise is above the specified rise range on the rating plate.

If the actual input is significantly higher than the furnace input specified on the rating plate then replace the gas orifices with the gas orifices of the proper size for the type of gas you are using.

For altitudes above 2,000 ft. (610 m) the furnace input MUST BE DERATED. Refer to the GAS ORIFICE CONVERSION FOR PROPANE (LP) and HIGH ALTITUDE in SECTION IV for information on high altitude conversions.
Reading the gas pressure with the burner box cover in place:

Remove the screws securing the burner box front cover plate. Remove the cover. The gasket and may stick in place. Connect the positive side of the manometer to the gas valve as described in E above. There will be no second connection to the manometer, as it will reference atmospheric pressure. Refer to Figure 39 for connection details.

1. Refer to Figure 38 for location of pressure regulator adjustment cap and adjustment screw on main gas valve.
2. Turn gas and electrical supplies on and follow the operating instructions to place the unit back in operation.
3. Adjust manifold pressure by adjusting gas valve regulator screw for the appropriate gas per the following:

TABLE 13: Nominal Manifold Pressure

<table>
<thead>
<tr>
<th></th>
<th>Natural Gas</th>
<th>Propane (LP) Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Pressure</td>
<td>3.5" w.c. (0.87 kPa)</td>
<td>10.0" w.c. (2.488 kPa)</td>
</tr>
</tbody>
</table>

TABLE 12: Inlet Gas Pressure Range

<table>
<thead>
<tr>
<th></th>
<th>Natural Gas</th>
<th>Propane (LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>4.5" W.C. (1.12 kPa)</td>
<td>8.0" W.C. (1.99 kPa)</td>
</tr>
<tr>
<td>Maximum</td>
<td>10.5" W.C. (2.61 kPa)</td>
<td>13.0" (3.24 kPa) W.C.</td>
</tr>
</tbody>
</table>

IMPORTANT: The inlet gas pressure operating range table specifies what the minimum and maximum gas line pressures must be for the furnace to operate safely. The gas line pressure MUST BE

- 7" W.C. (1.74 kPa) for Natural Gas
- 11" W.C. (2.74 kPa) for Propane (LP) Gas

in order to obtain the BTU input specified on the rating plate and/or the nominal manifold pressure specified in these instructions and on the rating plate.

ADJUSTMENT OF MANIFOLD GAS PRESSURE

Manifold gas pressure may be measured by two different procedures. It may be measured with the burner box cover in place or it may be measured with the burner box cover removed. Follow the appropriate section in the instructions below. Refer to Figure 38 for a drawing of the locations of the pressure ports on the gas valve.

Turn gas off at the ball valve or gas cock on gas supply line before the gas valve. Find the pressure ports on the gas valve marked OUT P and IN P.

1. The manifold pressure must be taken at the port marked OUT P.
2. The gas line pressure must be taken at the port marked IN P.
3. Using a 3/32" (2.4 mm) Allen wrench, loosen the setscrew by turning it 1 turn counter clockwise. DO NOT REMOVE THE SET SCREW FROM THE PRESSURE PORT.

Read the inlet gas pressure using either of the two methods below.

Reading the gas pressure with the burner box cover in place:

A. Disconnect the pressure reference hose from the right side of the burner box. Using a tee fitting and a short piece of hose, connect the negative side of the manometer to the burner box as described in below.
B. Remove one end the 5/16" (0.8 cm) ID flexible tubing over the pressure port on the burner box.
C. Insert the end of the 5/16" (0.8 cm) tubing, that has the 1/8" (0.3 cm) adapter at the end of the tube, in to the 1/8" (0.3 cm) tee.
D. Connect the 1/8" (0.3 cm) tee to the burner box adapter and to the negative side of a U-tube manometer or digital pressure measuring equipment with 2 – 1/8" (0.3 cm) tubes.
E. Use the 5/16" (0.8 cm x 1/8" (0.3 cm) reducing coupling and a 4" (10.2 cm) piece of 1/8" (0.3 cm) tubing to connect the positive side of the manometer to the gas valve pressure reference port. Refer to Figure 39 for connection details.

4. After the manifold pressure has been adjusted, re-calculate the furnace input to make sure you have not exceeded the specified input on the rating plate. Refer to "CALCULATING THE FURNACE INPUT (NATURAL GAS)".
5. Once the correct BTU (kW) input has been established, turn the gas valve to OFF and turn the electrical supply switch to OFF; then remove the flexible tubing and fittings from the gas valve pressure tap and the pressure reference hose from the right side of the burner box and tighten the pressure tap plug using the 3/32" Allen wrench. Replace the burner box front cover (if it was removed) and place the pressure reference hose back on the gas valve.
6. Turn the electrical and gas supplies back on, and with the burners in operation, check for gas leakage around the gas valve pressure port for leakage using an approved gas detector, a non-corrosive leak detection fluid, or other leak detection methods.

WARNING

The manifold pressure must be checked with the screw-off cap for the gas valve pressure regulator in place. If not, the manifold pressure setting could result in an over-fire condition. A high manifold pressure will cause an over-fire condition, which could cause premature heat exchanger failure. If the manifold pressure is too low, sooting and eventual clogging of the heat exchanger could occur. Be sure that gas valve regulator cap is in place and burner box to gas valve pressure reference hose is connected.
ADJUSTMENT OF TEMPERATURE RISE

DANGER

The temperature rise, or temperature difference between the return air and the supply (heated) air from the furnace, must be within the range shown on the furnace rating plate and within the application limitations shown in Table 3 “ELECTRICAL AND PERFORMANCE DATA”. The supply air temperature cannot exceed the "Maximum Supply Air Temperature" specified in these instructions and on the furnace rating plate. Under NO circumstances can the furnace be allowed to operate above the Maximum Supply Air Temperature. Operating the furnace above the Maximum Supply Air Temperature will cause premature heat exchanger failure, high levels of Carbon Monoxide, a fire hazard, personal injury, property damage, and/or death.

The temperature rise, or temperature difference between the return air and the heated supply air from the furnace, must be within the range shown on the furnace rating plate and within the application limitations as shown in Table 3.

After about 20 minutes of operation, determine the furnace temperature rise. Take readings of both the return air and the heated air in the ducts, about six feet (1.83 m) from the furnace where they will not be affected by radiant heat. Increase the blower speed to decrease the temperature rise; decrease the blower speed to increase the rise.

All direct-drive blowers have multi-speed motors. The blower motor speed taps are located in the control box in the blower compartment. Refer to Figure 30, and the unit-wiring label to change the blower speed. To use the same speed tap for heating and cooling, the heat terminal and cool terminal must be connected using a jumper wire and connected to the desired motor lead. Place all unused motor leads on Park terminals. Two are provided.

CAUTION

Do not energize more than one motor speed at a time or damage to the motor will result.

ADJUSTMENT OF FAN CONTROL SETTINGS

This furnace is equipped with a time-on/time-off heating fan control. The fan on delay is fixed at 30 seconds. The fan off delay has 4 settings (60, 90, 120 and 180 seconds). The fan off delay is factory set to 120 seconds. The fan-off setting must be long enough to adequately cool the furnace, but not so long that cold air is blown into the heated space. The fan-off timing may be adjusted by positioning the jumper on two of the four pins.
FURNACE CONTROL DIAGNOSTICS

The furnace has built-in, self-diagnostic capability. If a system problem occurs, a blinking LED shows a fault code. The LED can flash red, green or amber to indicate various conditions. It is located behind a clear view port in the blower compartment door.

The control continuously monitors its own operation and the operation of the system. If a failure occurs, the LED will indicate the failure code. If the failure is internal to the control, the light will stay on continuously. In this case, the entire control should be replaced, as the control is not field repairable.

Flash sequence codes 1 through 11 are as follows: LED will turn "on" for 1/4 second and "off" for 1/4 second. This pattern will be repeated the number of times equal to the code. For example, six "on" flashes equals a number 6 fault code. All flash code sequences are broken by a 2 second "off" period.

SLOW GREEN FLASH: Normal operation.

SLOW AMBER FLASH: Normal operation with call for heat.

RAPID RED FLASH: Twinning error, incorrect 24V phasing. Check twinning wiring.

RAPID AMBER FLASH: Flame sense current is below 1.5 microamps. Check and clean flame sensor. Check for proper gas flow. Verify that current is greater than 1.5 microamps at flame current test pad.

4 AMBER FLASHES: The control board is receiving a "Y" signal from the thermostat without a "G" signal, indicating improper thermostat wiring.

1 RED FLASH: This indicates that flame was sensed when there was not a call for heat. With this fault code the control will turn on both the inducer motor and supply air blower. A gas valve that leaks through or is slow closing would typically cause this fault.

2 RED FLASHES: This indicates that the normally open pressure switch contacts are stuck in the closed position. The control confirms these contacts are open at the beginning of each heat cycle. This would indicate a faulty pressure switch or miswiring.

3 RED FLASHES: This indicates the normally open pressure switch contact did not close after the inducer was energized. This could be caused by a number of problems: faulty inducer, blocked vent pipe, broken pressure switch hose or faulty pressure switch.

4 RED FLASHES: This indicates that a primary or auxiliary limit switch has opened its normally-closed contacts. This condition may be caused by: dirty filter, improperly sized duct system, incorrect blower speed setting, incorrect firing rate or faulty blower motor.

5 RED FLASHES: This fault is indicated if the normally closed contacts in the rollout switch opens. The rollout control is manually reset. If it has opened, check for proper combustion air, proper inducer operation, and primary heat exchanger failure or burner problem. Be sure to reset the switch and cycle power (24 VAC) to the control after correcting the failure condition.

6 RED FLASHES: This indicates that after the unit was operating, the pressure switch opened 4 times during the call for heat. If the main blower is in a "Delay on" mode, it will complete it, and any subsequent delay off period. The furnace will lock out for one hour and then restart.

7 RED FLASHES: This fault code indicates that the flame could not be established. This no-light condition occurred 3 times (2 retries) during the call for heat before locking out. Low gas pressure, faulty gas valve, dirty or faulty flame sensor, faulty hot surface ignitor or burner problem may cause this. The furnace will lock out for one hour and then restart.

8 RED FLASHES: This fault is indicated if the flame is lost 5 times (4 recycles) during the heating cycle. This could be caused by low gas pressure, dirty or faulty flame sensor or faulty gas valve. The furnace will lock out for one hour and then restart.

9 RED FLASHES: Indicates reversed line voltage polarity or grounding problem. Both heating and cooling operations will be affected. Check polarity at furnace and branch. Check furnace grounding. Check that flame probe is not shorted to chassis.

10 RED FLASHES: Gas flow with no call for heat. Check gas valve and gas valve wiring.

11 RED FLASHES: This indicates that a primary or auxiliary limit switch has opened its normally-closed contacts and has remained open for more than five minutes. This condition is usually caused by a failed blower motor or blower wheel. Cycle power (24 VAC) to the control to reset the hard lockout condition after correcting the failure condition.

12 RED FLASHES: This code indicates an open igniter circuit, which could be caused by a disconnected or loose wire or by a cracked or broken igniter.

STEADY ON RED: Control failure. Replace control board.

60-MINUTE AUTOMATIC RESET FROM LOCKOUT: This control includes a "watchdog" type circuit that will reset from a lockout condition after 60 minutes. Operational faults 6,7,8 will be reset. This provides protection to an unoccupied structure if a temporary condition exists causing a furnace malfunction. An example would be a low incoming gas supply pressure preventing unit operation. When the gas pressure is restored, at some point the "watchdog" would restart the unit and provide heat for the house.

NOTE: If a flame is detected the control flashes the LED for 1/8 of a second and then enters a flame stabilization period.

IGNITION CONTROL (P/N 031-01972-000)
Normal flame sense current is approximately 3.7 microamps DC (ua)
Low flame signal warning starts at 1.5 microamps.
Low flame signal control lockout point is 0.1 microamps DC (ua)

DIAGNOSTIC FAULT CODE STORAGE AND RETRIEVAL

The control in this furnace is equipped with memory that will store up to five error codes to allow a service technician to diagnose problems more easily. This memory will be retained even if power to the furnace is lost. This feature should only be used by a qualified service technician.

The control stores up to five separate error codes. If more than five error codes have occurred since the last reset, only the five most recent will be retained. The furnace control board has a button, labeled "LAST ERROR" that is used to retrieve error codes. This function will only work if there are no active thermostat signals. So any call for heating, cooling or continuous fan must be terminated before attempting to retrieve error codes.

To retrieve the error codes, push the LAST ERROR button. The LED on the control will then flash the error codes that are in memory, starting with the most recent. There will be a two-second pause between each flash code. After the error codes have all been displayed, the LED will resume the normal slow green flash after a five second pause. To repeat the series of error codes, push the button again.

If there are no error codes in memory, the LED will flash two green flashes. To clear the memory, push the LAST ERROR button and hold it for more than five seconds. The LED will flash three green flashes when the memory has been cleared, then will resume the normal slow green flash after a five-second pause.
TABLE 14: Blower Performance CFM

<table>
<thead>
<tr>
<th>Models Input</th>
<th>Speed Tap</th>
<th>Airflow with Top Return - without Filters (CFM)</th>
<th>Airflow with Top Return - without Filters (m³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EXTERNAL STATIC PRESSURE, INCHES W.C. (CFM)</td>
<td>EXTERNAL STATIC PRESSURE (kPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0</td>
<td>0.025 0.050 0.075 0.099 0.124 0.149 0.174 0.199 0.224 0.249</td>
</tr>
<tr>
<td>60 High</td>
<td>1667 1652 1631 1595 1557 1511 1456 1382 1313 1211</td>
<td>48 47 46 45 44 43 41 39 37 34</td>
<td></td>
</tr>
<tr>
<td>Med High</td>
<td>1193 1183 1173 1162 1142 1115 1076 1036 982 950</td>
<td>34 33 32 31 30 29 28 27</td>
<td></td>
</tr>
<tr>
<td>Med Low</td>
<td>933 933 921 911 902 872 825 793 771 712</td>
<td>26 26 26 26 26 26 26 25 23 22 22 20</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>752 745 731 718 698 652 602 580 536 496</td>
<td>21 21 21 20 20 18 17 16 15 14</td>
<td></td>
</tr>
<tr>
<td>80 High</td>
<td>2071 2026 1981 1935 1884 1796 1713 1625 1532 1401</td>
<td>59 57 56 55 53 51 48 46 43 40</td>
<td></td>
</tr>
<tr>
<td>Med High</td>
<td>1583 1590 1569 1554 1532 1502 1457 1409 1327 1221</td>
<td>45 45 44 44 43 41 40 38 35</td>
<td></td>
</tr>
<tr>
<td>Med Low</td>
<td>1256 1275 1275 1288 1275 1265 1232 1187 1126 1023</td>
<td>36 36 36 36 36 35 34 32 29</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>937 939 938 945 942 936 912 874 810 726</td>
<td>27 27 27 26 26 26 25 23 21</td>
<td></td>
</tr>
<tr>
<td>100 High</td>
<td>2404 2320 2225 2138 2034 1924 1818 1692 1559 1422</td>
<td>68 66 63 61 58 54 51 48 44 40</td>
<td></td>
</tr>
<tr>
<td>Med High</td>
<td>2018 1955 1883 1815 1750 1670 1586 1497 1394 1246</td>
<td>57 55 53 51 50 47 45 42 39 35</td>
<td></td>
</tr>
<tr>
<td>Med Low</td>
<td>1626 1581 1531 1488 1418 1363 1291 1225 1123 964</td>
<td>46 45 43 42 40 39 37 35 32 27</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>1336 1291 1249 1205 1155 1091 1018 951 884 756</td>
<td>38 37 35 34 33 31 29 27 25 21</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Airflow expressed in standard cubic feet per minute (CFM) and in cubic meters per minute (m³/min).
2. Motor voltage at 115 V.

FILTER PERFORMANCE

The airflow capacity data published in Table 14 represents blower performance WITHOUT filters. To determine the approximate blower performance of the system, apply the filter drop value for the filter being used or select an appropriate value from the Table 15.

NOTE: The filter pressure drop values in Table 15 are typical values for the type of filter listed and should only be used as a guideline. Actual pressure drop ratings for each filter type vary between filter manufacturers.

TABLE 15: Filter Performance - Pressure Drop Inches W.C. and (kPa)

<table>
<thead>
<tr>
<th>Airflow Range</th>
<th>Minimum Opening Size</th>
<th>Disposable</th>
<th>Washable Fiber</th>
<th>Pleated</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFM</td>
<td>m³/min</td>
<td>in²</td>
<td>cm²</td>
<td>in W.C.</td>
</tr>
<tr>
<td>0 - 750</td>
<td>0 - 21.4</td>
<td>230</td>
<td>1484</td>
<td>0.01</td>
</tr>
<tr>
<td>751 - 1000</td>
<td>21.25 - 28.32</td>
<td>330</td>
<td>2129</td>
<td>0.05</td>
</tr>
<tr>
<td>1001 - 1250</td>
<td>28.33 - 35.40</td>
<td>330</td>
<td>2129</td>
<td>0.10</td>
</tr>
<tr>
<td>1251 - 1500</td>
<td>35.41 - 42.48</td>
<td>330</td>
<td>2129</td>
<td>0.10</td>
</tr>
<tr>
<td>1501 - 1750</td>
<td>42.49 - 49.55</td>
<td>380</td>
<td>2452</td>
<td>0.15</td>
</tr>
<tr>
<td>1751 - 2000</td>
<td>49.56 - 56.63</td>
<td>380</td>
<td>2542</td>
<td>0.19</td>
</tr>
<tr>
<td>2001 & Above</td>
<td>56.64 - Above</td>
<td>463</td>
<td>2987</td>
<td>0.19</td>
</tr>
</tbody>
</table>
APPLYING FILTER PRESSURE DROP TO DETERMINE SYSTEM AIRFLOW

To determine the approximate airflow of the unit with a filter in place, follow the steps below:

1. Select the filter type.
2. Select the number of return air openings or calculate the return opening size in square inches to determine the proper filter pressure drop.
3. Determine the External System Static Pressure (ESP) without the filter.
4. Select a filter pressure drop from the table based upon the number of return air openings or return air opening size and add to the ESP from Step 3 to determine the total system static.
5. If total system static matches a ESP value in the airflow table (i.e. 0.20 w.c. (50 Pa), 0.60 w.c. (150 Pa), etc.) the system airflow corresponds to the intersection of the ESP column and Model/Blower Speed row.
6. If the total system static falls between ESP values in the table (i.e. 0.58 w.c. (144 Pa), 0.75 w.c. (187 Pa), etc.), the static pressure may be rounded to the nearest value in the table determining the airflow using Step 5 or calculate the airflow by using the following example.

Example: For a 100,000 BTUH (29.3 kW) furnace operating on high-speed blower, it is found that total system static is 0.58° w.c. To determine the system airflow, complete the following steps:

Obtain the airflow values at 0.50 w.c. (0.124 Pa) & 0.60 w.c. (0.149 kPa) ESP.

Airflow @ 0.50°: 2034 CFM (58 m³/min)
Airflow @ 0.60°: 1924 CFM (54 m³/min)

Subtract the airflow @ 0.50 w.c. (0.124 kPa) from the airflow @ 0.60 w.c. (0.149 kPa) to obtain airflow difference.

1924 - 2034 = -110 CFM (-4 m³/min)

Subtract the total system static from 0.50 w.c. (0.124 kPa) and divide this difference by the difference in ESP values in the table, 0.60 w.c. (0.149 kPa) - 0.50 w.c. (0.124 kPa), to obtain a percentage.

\[
\frac{(0.58 - 0.50)}{(0.60 - 0.50)} = 0.8
\]

Multiply percentage by airflow difference to obtain airflow reduction.

\[
(0.8) \times (-110) = -88
\]

Subtract airflow reduction value to airflow @ 0.50 w.c. (0.124 kPa) to obtain actual airflow @ 0.58 inwc (0.148 Pa) ESP.

2034 - 88 = 1946 CFM

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>DESCRIPTION</th>
<th>USED WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1CT0302</td>
<td>CONCENTRIC INTAKE/VENT 2"</td>
<td>ALL MODELS</td>
</tr>
<tr>
<td>1CT0303</td>
<td>CONCENTRIC INTAKE/VENT 3"</td>
<td>ALL MODELS</td>
</tr>
<tr>
<td>1PS0901</td>
<td>HIGH ALTITUDE PRESSURE SWITCH KIT (Does Not Include Orifices)</td>
<td>60/100</td>
</tr>
<tr>
<td>1PS0903</td>
<td>CONDENSATE NEUTRALIZER KIT</td>
<td>80</td>
</tr>
<tr>
<td>1NK0301</td>
<td>SIDEWALL VENT TERMINATION KIT 3"</td>
<td>ALL MODELS</td>
</tr>
<tr>
<td>1HT0901</td>
<td>SIDEWALL VENT TERMINATION KIT 2"</td>
<td>ALL MODELS</td>
</tr>
<tr>
<td>1CB0317</td>
<td>COMBUSTIBLE FLOOR BASE</td>
<td>17-1/2" CABINET</td>
</tr>
<tr>
<td>1CB0321</td>
<td></td>
<td>21" CABINET</td>
</tr>
<tr>
<td>1TK0917</td>
<td>COIL TRANSITION KIT</td>
<td>17-1/2" CABINET</td>
</tr>
<tr>
<td>1TK0921</td>
<td></td>
<td>21" CABINET</td>
</tr>
<tr>
<td>1VK0901</td>
<td>3-WAY TRANSITION KIT</td>
<td>ALL MODELS</td>
</tr>
</tbody>
</table>

TABLE 16: Field Installed Accessories - Non-Electrical